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PREFACE

Yor many years the subjeet of functional equations hag
held a prominent place in the attention of mathematicians,
In more recent years this attention has been directed to a
particular kind of functiona] equation, an integral equation.,\
whercin the unknown function oceurs under the integral
sign. The study of this kind of equation is sometirhes
referred to as the inversion of a definite integral, O

In the present volume I have tried to present.din a read-
able and systematic manner the gencral thcr;gﬁy of linear
integral equations with some of its applf&a‘,ti{ms. The
applications given are fo differential cquat’ioﬁs, caleulus of
variations, and some problems in mathematical physies.
The applications to mathematica'l.{jihysics herein given
are to Neumann's problem, Dirichlet’s problem, and certain
vibration problems which lead todifferential equations with
boundary conditions. The .jé.l't-empt- has been made to
present the subject mattopdn such a way as to make the
volume available as a text on this subject in Colleges and
Universitics. 2l

The reader who a“b»\iesires can omit the chapters on the
applications, Ti\é\nrcmaining chapters on the general
theory are an éntity in themselves.

The discuésion has been confined to those equations which
are lineagand in which a single intogration oveurs. The
limitg ¢fthe present volume forbid any adequate treatment
of ifitegral equations in several independent variables;
sf:qf:cms of integral equations; integral equations of higher

w\:ii[}d(‘,l'; integro-differential cquations; singular integral
‘equations; integral equations with special ordiscontinuous
kernelas,

I desire here to express my thanks to Prof. Osear Bolza
(now of Freiburg University, formerly of the University of
Chicago)} for his permission to make use of my nofes oy
his lectures on integral equations delivered during the

[I¥3
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summer of 1913 at the University of Chicago. A Dhound

volume of these nofes in my handwriting has resided these

past ten years on the shelves of the University of Chicago
mathematical library and has heen available to many
students during this time. A nwmber of copies of these
notes are’in cireulation in this country at present.

The following books have been available and have been

found to be of value in the preparation of this volume: O\

'N\S “

M. Boceer: An Inttoduction to the Study of In’f‘.({gf'hl
Equations. No. 10, Cambridge Traets, 1009y Uni-
versity Press.  Cambridge. ’mj\"

I. Coursar: Cours D’Analyse Mathémabignte. Tome
ITI.  Chaps. 30, 31, 32, 33. Paris, Gauthier-Villars,
1923. W

Heywoon-Fricawr: L'Equation dd\'Tredholm of  sos
applications & Ila Physiqug».’1}-‘Tii.t-hématique. Paris,

Hermann et Fils, 1912, (™

Knrsur: Die Integmlg]eichu}fg‘e.n und ihre Anwendungen
in der Math, Phygik. Braunschweig, Vieweg ot
Sohu, 1922. O\

G. Kowarewskr: XBinfihrung in die Determinanten
Theoric.  18Cand 19 cap. (p. 455-505). Verlag von
Veit et Cn, 1900,

Lavesco: Igtroduction & la Théorie des Equations Inté-
grarl@,,\ Paris. Hermann et Fils, 1912.

"\ .
Volt{g{.;fa: Legons sur les Equations Intégrales cf les Equa-
e~bons Intégro-Differentielles, Paris, Gautheir-Villars,
N 1913,
\ )

For those who desire a bibliography on this subject we
reler the reader to 4 short bibliography in the work by
_Heywood-Fréchet and to a moroc extensive bibliography
1n the work by Laleseo,

W. V. Lovire.

.
CoLorano SrRiNcs, Cono., June, 1924,
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LINEAR
INTEGRAL EQUATIONSS?

CHAPTER 1 nts

INTRODUCTORY

 §

PN
1. Linear Integral Equation of t{{e First Kind.—An
equation of the form PAN

Ne/

1) Z’K(x, ng’gﬁéﬁ = /@)

\ 3

15 said to be a lmear»mtegral equation of the first kind.
The functions Kz, ¢ )\and flz} and the limits @ and & are
known, Ttis pr(‘i};{b\sed so to determine the unknown fune-
tion w that (1)(0s satisfied for all values of z in the closed
interval o @< b, K(z, 1) is called the kernel of this
equation, \

1ns§ “of equation (1), we have often to deal with
equations of exactly the same form in which the upper
lgmg’f: of integration is the variable z. Suech an equation

~Jasoen to be a special casc of (1) in which the kernel K (x, £)

vanishes when ¢ > x, since it then makes no difference
whether z or b is used as the upper limit of integration,

The. characteristie feature of this equation is that the
unknown function # occurs under 2 definite integral.
Hence equation (1) is called an ¢nfegral cquation and, since
u oceurs linearly, equation (1} is called a linear integral
equation.

1



2 LINEAR INTEGRAL EQUATIONS S3d

2. Abel's Problem.—As an illustration of the Wiy in

which integral equations arise, we give here o staternent 0
Abel’s problem.

g Given a smooth curve situated
vertical plane. A particle staris from Pt
Q@,ﬂ at any point P. Let g find, uniler fiu-'

action of gravity, the time 7 of deseepf iy
0, the lowest point 0. Choose O as b

gin of coordinates, the z-axis pertically

upward, and the y-axis horizOntal. 1.
the coordinates of P be {(z, ¥), of @ be (Egvf}fltru] s the
arc 04, v

The velocity of the particle at Q is N
ds A\,

(_{E = =y QQ(I;L}{)-

Fra, 1.

Hengce AN
SN 290z
The whole time of ({es:ee\nt is, then,

7 [l
° V2 — g

AN

A\ ds = u(g)dt.

r- [ o

[ \/2g(x - E)
‘t.ibel set 'himself the problem! of finding that eurve for
which the time 7 of deseent is 5 given function of T, say flz).

“For & solution of this problem, sec B
. L BOCHER “Int 1 H 1"
P 8, CMh“dEE University PresE;, 1909, ' e EquatmnS,



83 INTRODUCTORY 3

Our problem, then, is to find the unknown function % from
the equation

J@) = f T ( — (o

This is a linear integral equation of the first kind for the\

determination of .
3. Linear Integral Equation of the Second Klnd A An

equation of the form \ O

T

b < 3
(2) u(z) = flz) + f Kz, s)a(t)d{l&

ig said to be a linear integral equation ofi\the second kind.
K(z, 1) is called the kernel of this’gqliation. The fune-
tions K(z, £} and f(x) and the llmitS a\and bare known. The
function » is unknown. )
The equation

u(e) = f@F f Ko, du(ods
is known as Volten‘a\s linear integral equation of the second
kind, ’\\
If f(x) < 0 ‘then
*\ u(z) = fK(x, Dult)dt.

\O°

-

;ﬁns equation is said to be a homogencous linear integral

\equatlon of the second kind.
W™ Sometlmes, in order to facilitate the discussion, a para-

meter X is introduced, thus

' b
uw(z) = f(z) + x | Kz, Hult)dt.

This equation is said to be a linear integral equation of the
sccond kind with a parameter.



4 LINEAR INTECGRAL EQUATIONS '3

Linear integral equations of the first and second kin.
are special cases of the linear integral equation of the thip
kind:

\If(:c)u.(:c). = f{r} +f1}\’lf.r, i,

N
Equation (1) is obtained if ¥x) = 0,
Equation (2) is obtained if Tir) = 1. O\

. . . . . 0N
4. Relation between Linear Differential Equatipns’ and
Volterra’s Integrat Equation.—Consider the eqtion
o\

. ety Ry PR 4.
(3) dx—{ﬁal(x;@—_ﬁf N )

L . )
where the origin is a regular point for th}&\n (),
Let us make the transformation ‘..’.}\\'

driy . :’:;\
E:l':c_” - Hff",);':.
Then “2’_}:;
( f’f”_"_’y‘ii' " . |
dgen= J, w(ride 4 (7,
| "\
N SO
[?f :fvrugas);f\; _|__ C __-'f_:j__] + c =1 o
& R0 B Vit NI N

P, T T
OJ;. wl‘
where ‘g}s(&:)dm" stands for

Ly
N/

Eq}@x ons (4) transform {3} into
/“\s':(:fij ui{r) 4+ a,(.’r.)f w(x)dz
N ’

"4

& multiple intogral of order »,

.04 an(x)[J:iz{x)dx“ = pflx) +§:;‘ Ciai{a),
1

where

O 0@ @ e e



§a] INTRODUCTORY 5
It we now put

e(2) + D Ceanlz) = f(),

and make use of the well-known formu]a

[t - - [ v “©

equation (3) beeomes ' \ ~
u(x) +f [al(x) + ax(x)(z — t)
+ ..+ an(x) (x—t)_lj\(t)dt = (@),

which is & Volterra integral equation of’ ﬁlc second kind.
In order that the right-hand membe\lﬂéf (5) have a definite
value it is necessary that the caefﬁctcnts C; have definite
valucs, Then, inversely, thes solution of the Volterra’s
equation (5) is equzvalentvt;o the solution of Cauchy's
problem for the lineary differential equation (3). The
unigueness of the solutlon of Volterra’s equation follows
from the fact that, Lauchy’s problem admifts for a regular
point one and 0}1}( one solution.t
5. Non-linear, Equations.—This work will be confined to
a discussionp(of linear integral equations. It is desirable,
ho“(‘var,\at this point to call the reader’s attention to
scme urtégral equations which are non-linear.
"The Unknown function may appear in the equation o a

pewsr n greater than 1, for example;
4 n\’ $

O s
\ w(z) = flz) + A f K(z,Hyur ()di.
'Fhe unknown funetion may appear in a more general
way, ag indicated by the following equation:
]
u(z) = f(z) + ?\f olz, &, u(f)]d.

1 For further diseussion consult Lavksco, T., “Théorie DPes Equa-
tions Intégrales,” pp. 12ff, Herman and Fils, Paris, 1912,
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In particular, the differential equation

du

_';E = Qo(x: U)

can be put in the integral form
u@) = ¢ + f olt, u()]dr. N
) 2\

Still other general types of non-linear integral eq&iﬁiohs
have been considered. Studies have also beenmade of
Systems of Integral equations both lincar and’hén-lincar.

b N
ulz, ) = Sz, 4y + )\ff K(x,’g{é;, taduly, t,)dt,dt,.

6.. Singular Equations.— Ap ’i.nt:eg’ral equation is said to
b'e singular when either one oxlioth of the limits of integra-
tion become infinite, for example;

u(z} = )‘Eﬁf) + )\fsin (xt)ult)de,
. O )
An integral €quanton’is also said to he singular if the kernel

ba?comes infinifefor one op more points of the interva under
discussion, {6r gxample;

AU e = f g (f’t?au(t)dt (0<a<1),

Abel% problem, as stateq in §2, is of thig character. Abal
et Rimself the problem of solving the more gener

N/ f(z) 2'[}3({%%; (O<a<l).

N



e

7] INTRODUCTORY 7

1. The first method, that of successive substitutions,
due to Neumann, Liouville, and Volterra, gives us u(z) as
an integral series in A, the coefficients of the various powers
of X being functions of x. The series converges for values
of & less in absolute value than a certain fixed number.

2. The second method, due to Fredholm, gives u(x) as |
the ratio of two integral series in A. Each series has an
infinite radius of convergence. In the numerator the coeffi-
cients of the various powers of : are funetions of xrs~\The
denominator is independent of z. For those va,IUes of A
for which the denominator vanishes, there 1s, > 1) general
no solution, but the method gives the solumdn in those
exceptional eases in which a solution does éxist. The solu-
tion is obtained by regarding the integral equation as the
limiting form of a system of n Iinea;*{lgebr&ic equations in
n variables as n becomes infinite. 2N/

3. The third method, developed"by Hilhert and Schmidt,
gives u(x) in terms of a set of fundamental functions. The
functions are, in the ordmary case, the solutions of the
corresponding homogeuwus equation

u(x) = }\fK(:c, £u(t)dt,
L\
In general, thisequation has but one solution:
O ufz) =
But the;;"e\f;xists a set of numbers,
§ YT VYR VO

,.Qa.lled characteristic constanis or fundamental numbers, for
“\Meéach of which this equation has a finite solution:

\ )

wr(x), walz), . « - 5 UalZ), -
These are the fundamental functions. The solution then
is obtained in the form

u(@) = 2,Catia(z),

where the C, are arbitrary constants.
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e

EXERCISES

Form the integral equations corresponding to Eodlerwing o
ential equations with the given initinl conditions:

dz? i "
1 dxﬁry Gz=0y=0y =1Ly =

/\
Ans, z:(r)—x+/(t-— rlu
\v
- O

v

Ans. w(e) = 99 + 6 +f {lix —0&%{— EENRTRN RIS
2
3.d;g+y=msa',:u=y=0 11”-—2\\\Q

\,
Ans. ulz) = cogy x'té f {— ruiti,
o
N

N

N\ gy
\:\3* Ang wir) = 1 + f wlt i
=N »
5, ¥ ~g by

‘dﬂ:_-_3 1‘}.1:+ =,

Ans. u(z) = 7 ——%\\’432 f B+ 66z — H—4(x ~ R
C}
Ke
. ’(/
\O



CHAPTER 1I

. N\
SOLUTION OF INTEGRAL EQUATION OF SECOND
KIND BY SUCCESSIVE SUBSTITUTIONS .’:\’

"N
8. Solution by Successive Substitutions, —Wgel proceed
now to a solution of the linear integral equatlon ‘of %he sec-
ond kind with a parameter.  Wetake up ﬁrs.tjs.h‘(‘ case where
both limits of integralion arc fixed (Fredheln/s equation).
We agsume that \\,

Oy a) ulr) = flz) + )\f K{z, t)w{tﬁt {a, b, constants).

By Kix, t) #£ 0, 1s real and acontmuouﬁ in the rectangle
R, for which o £ NS e band o £t £ 5.
¢) flz) # 0, is real a‘ndumtmu(ms in the inlerval 7, for
which ¢ < {é b.
d) A, const&n{‘ij}
We sec al ogee that if there exists a continuous solution
niz) of (1)\ Antl Kz, {} 13 continuous, then f{z) must be
continumh Henee the inclusion of condition (¢} above.
\\}"\tltllt( in the second member of (1), in place of
uf@ its value as given by the cquation itself. We find

" . ) 1
\\\'fe(x) = j{z} + )\f Nz, 'ﬁ}[j(i) + )\f K(t,t.)u(tl)dtl]dﬁ

b
= flz) + )\f Ka, 0t

“ ] 13
+ Pf K(:c,f,)f Kt i)ult)dlde.

Here again we substitute for u{) its value as given by (1).
§



10 LINEAR INTEGRAIL EQUATIONS
We get

4
u(®@) = f) + ) [ K, Df (@)ds

(]
I f bK(J:, D) f K(t, n)[f(m ~

b
[ K e g

oy \\

1@+ [ Kty \O

S
+A f K(z, 1) f K, e)f)de, ds '\’v

_[K(z t)fK(s t;)/ Ks(z) tz)u(ig)dt eyt

Proceeding i thig wa.y we obtain

,’ 3
(2) w(@)=f(z) 4+

K(x t)f(!.)df

fK(a: t}fK(t t)fit)dde+ .
[ K(z, #) f Kt ) .

K(tm—?) [ l)f(tn—-l)dtm-

c - dhdl Ry (z),
\\J
where W
~ b
Rn.{_l(a’{a' A’H—lf K(x, t)f K(t tl) fK(tn—I) tl’l)
"{\ a ]
"\‘:r::; w(t,)dt, - odé dl.
Ew’l‘his leads ug tq the considerai;
Qnﬁmte serieg:

]
LR CERY i T

14 D
+ hz.[ K(x) z)f K(‘} zl)f(tl)d‘ldt + .
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Under our hypotheses b) and ¢}, each term of this series is
¢ontinuous in f. This series then represents a continuous
function in I, provided it converges uniformly in I.

Since K(z, t) and f(x) are continuous in B and I respee-
tively, lK| has a maximum value M in K and |f(x)| has a
maximum value ¥ in I: -

N

|K(z, )| £ M inR ,\”\'
/@) £ ¥ il

b 5
Put 8,(z) = N‘f Kz, t)f KL, ) . foiu—z, 1)

f(tn—l)din_’ PR dtdf
Then |S (:r:)[ < l)\nlNMn(b - "’l“‘
The series of which this i3 a gener'a} term converges only

wiien .
|)\iM(b a) < 1,

Thus we see that thc se.rles (3) converges absolutely and
uniformly when £

¢ i:.} X : 1 .
SN -

If (1) has’ & continuous solution, it must be expressed
by (2). '\111 %u(z) is continuous in I, its absolute value has'a
max.\"b.m value U, Then

N
R IR,.+1($) < 1hn+IIUMn+1(b — o)ty

\ "

CIf [AM(® — a) < 1, then

o

lim R,pi(z) = 0.
Thus we see that the function u(r) satisfying (2} is the
continuous function given by the series (3).
~ We can verify by direct substitution that the funetion
u{x) defined by (3) satisfies (1) or, what amounts to the
same thing, place the series given by (3) equal to u(z),



12 LINEAR INTEGRAL EQUATIONS i

multiply both sides by )\K(:c, £) and integrate tern b
term,! as we haye g right to do.  We obtain

b ]
)\fbK(:c, thulhdt = fK(:c,t)[f(t) + )\f KA e,

N
+ o lrff
4 Y
=) f K(z, Of(tds o)
) b b (":’5
+ A2 f K(z, 1) f K, 0t 1
+ 3 @ \::}\
Sl =g S
Thus we obtain the following - o\
Theorem 1.—J1 O

N/

b ):’.
a) u(z) = Jiz) A lf{"x‘,“t)u(z)dt (e, b, constants).

b) Kz, &) is regl and?éél;tintlous in a rectangle f2,
for which LS4 b, ¢ i<,
K (z, 1)) < MWw' R, K(r, 1) & ¢
¢) Jlz) # 0, IS\rtal angd continuous in 7. 4 Sz <y,
A 1
d) X const —t o,
) cofl’i,t?dt’ N< M=y
then thex',&;“ﬁa-t-ion (1) has one and only one continuous
I

solutiof jr and this solution is given by the absolutely
and @uformly tonvergent sorjpg (3).
»\‘fjfhe equation

QO 4@ =10+ [k, uga

1 GOURSAT—-HED RICK,

. “Math Ccmatiey]
Ginn & Ca,

Anaiysis, vol. 1, §174
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Fquations (1) and (4) may have a continuous solution,
aven though the hvpothesis d),
WM~ a) <1,
i3 not fulfilled,  The trutl of this statement is shown by the
following example:

ulr) = j - i + f ‘o D, . ““\
which has the eontinnous solution n(z) = x, while ,:\\\
N —a) = 2 4 L, A
9, Volterra’s Equation.—The cqualion ON 3

5y u(:}:) = flx} + )\f Kz, t)u&\tﬂ'

iz known ag Felierra’s equazz(m
Lot us substitute sucecessively fox r}(l) its value as given
by (3], We lind QO

(6) ulz)=f(e)+ A f K, refffa&t

IRV ff;r}: o [ Kaiednd + .

-m(\f Kz, d)fK(! .
J‘\iért”_g, n_|)f(ﬁn_1)dfn_ T Lf-ﬁi it +Rn+1(.’£)}

whepra®

hm\%l == ?\“" Ix i)/ﬁ{ i)

v

T -
'“\“’ f Kitaoy, t) ulla)dta . . . diydt.

We consider the infinite series.

(6% uir) zf(x)—l—)\f.K(:f:, af)d

+)\2f‘°1\’(:r,t)fK(x,tl)f(gl)dll g+
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The general term Va(z) of this series may be writien

m@=g[}@q[k@m.“

Y ‘
f K(‘J‘H—Qj tll-—I).f(tn-—l)dtn-l e dtl (. A

Then, since K (z, H < Ming and {f(6)) < N in I, we hadhh,
nzmnghﬂNMéigéfgnuNQﬂ%giﬂimgagh.

The serics, for whijeh the positive constant A v [_:1_{(‘5?1! s
15 the genera] expression for the nth term, \is }convergeni
for all values of AN M, (b — a). Hence.the series {6} is
absolutely angd imiformly convergent. /)

If (5) hag g continuoys solution,’ftj 'must be expressed
by (6. 1r u(x) is continuoys ip L,%it8 absolute value has a
maximum valye {7, Then AN

(T prerls — a)dts b = gyjers
IRN"FI(:-E)Ig]R + |UM + —‘,—n_“—'_i-f-—-glk + llU_‘—_l_?T__i—_-l—__

i (e < x <0b).
Whenee o)

eonfir 10u8 furiction given by the séries (6", As before,
We can show thyt the exr sion for u(z) given by (6")

satisﬁgs\ ). Hence we have the following:
Theorem I1._y¢

4 ¢\ X
\»{’.;}3} @) u(z) = Jlz) + 2 [ Kz, Hult)ds (a, constant),
_ b) K(2, ) is real and continuoys ip th fang]
for which 4 gzéb,a Sty " rectangle &,
m@nngaK@n#a

o) flz) £ 0, is rea] ang continuous iy 7. asz<y
A, constant, T
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then the equation (5} has one and enly one continuous
solution u(z) in I, and this solution is given by the abso-
futely and uniforinly convergent series (6°).

The results of this article hold without change for the
equation

w(x) = flx) —f-f K{z, Hulhdt
2 ’\\\, .
Ly putting throughout the discussion A = 1. O
10. Successive Approximations.—We would llke to
noint out that the method of solution by successlve Approxi-
neutions differs from that of successive substvfbu\tlons
Under the method of suceessive approximafions we select
auy real function w,(x) continuous in £N\/Substitute in the

right-hand member of .\ “
DN

(1) u(z) = &) + A | B uit)r

in place of u(f), the functiﬁn"u (t). We find

N\ <

wi{x) = jl(x) —I— A K(z Bu{t)dt.

The function u} :)x) %o determmed 1s real and continuous in
7. Continue’fn like manner by replacing #, by ., and so
on. We eBitain a scries of functions

@), w(@), uale), . . (),
wh\i&é“é;mtisfy the equations,

\ ug(z) = flz) + A / Kz, Du,(t)ds
@ Un—a(z) = fl&) + kfbK(x, £)ttna{t)dt
u.{x) = f(z) —i—fbK(x, i, (t)dt
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From thesge equations we find

b
) uale) =f(z) 4 Kz, O)f tyae

@

b h
+l2fK($, t)fK(.!,t;)f(.‘fl)rﬂer ‘f— T N\

A b N ’:«\.
L ReY [ Ren O

£\

] s
fK(tn—-s,-zn—‘l)f”n-—?)d!rr-—i’ L ;(”f"fﬂﬂ{—.hj“
where N
b b 12 Vv’
R, = f K(z, 1) f Kty . ¥ S
() ) ’{!\ .
UglbanDdtoy . L ar, i

NN

%o{z) s real and continnoys in Iafd so
value Uin I, 7Thep 1t is easyfo'see that

ol < Dltrbens — gy
It, then, Narq — DI 1, we have
Alim R, = 0.
N

has maximum

R— o

Thus, ag 5, incm’qses, the serie

s of funetiong un{2) approach
a limig fung

£10n which is given by the «

Series in the right
Inember xodi..(‘S). We identify thig Series with the right
memb{mﬁ 6. Thus
& hm v, (z) = u(z).
™I =

‘ . is then tlear that each
cal with v(z) and hence the limit will be
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#{x}. DBut we have just seen that the limit is independent
of the choice of w.(z). Therefore,

v(z) = ulx),
A similar discussion can be carried through without
further difficulty for the Volterra equation, N\
11, Iterated Functions.—Place A
€ N\
[ Kz, &) = K(z, 9 N
%) b A\
- | Kiw, 0 = [ Ko, 00K, 0ds. O
| a D
. N
The functions Ky, K, . . . , K., . . B80formed are

eatled dterated functions. SO
By successive applications of (9) o\iﬁ\is evident that

b b N
(10} Kz, 1) = f oL f K(880K(s, s3) - . .
':{:.:’:‘K(si—-ly t)dsi_l . . . dsy.

O

From (10) Ka(r, s) is #n (n — 1)-fold integral and
Kuis, §) is a (p — 1)-fold integral. Whence we see that

5 ¢ 0.\"; .
f K, (x, $)Ku{s\Bds is an (n+ p — 1)-fold integral,

which, by sopié}éimple changes in the order of integration,
is seen to beutlentical with K, p(z, f). Hence
i"\s~

w4

[
A K, = [ Kala 9Ksle, 0.

ay
‘..\‘.
o

\\; 12, Reciprocal Functions.—Let

(12) —k(z, ) = Kz, £) + Kolz, 1) + . . -
+ K. (z, t) + .

1t is easy to show that, when K(z, t) is real and com.;inuous
in B, the infinite serics fork(z,) is absolutely and unlf.ormly
convergent if M(b — @) <1. Consequently, k(z, £) is real



18 LINEAR INTEGRAL EQUATIONS [§1:

and continuous in B, On account, of the first of equaiions
(9} and equation (11}, we have
~kx, t) — K(z, 1) = Koo, 8) + Ku(r, 8) + .

+ K.z, &) + .

b N
=fK1(x, SK(s,tids + . ., .
L£3 ¢ \.
b Ay
+fK1(x, S) (s, )ds + -:\"-“}\- )
N ¢ N
= /‘Kl(x, SJKl(S, l')d&’ + v, ,\;'..
u b A\S)
+fK,._1(a:, s) Ki(alds + .
13 ) \;
These equations may be written x\‘
' .“s'
—kz, 1) — Kz, 1) -_—.f Kz, §?.[ff1(8, 0+ .
KD AN S Jda
b u” .:’ .
=f !;‘Kl(x, S) + - :..‘\\_!_Kn_l(x, 3) + P ]Kl(s, t)ds-
LI ¢ \J
\\.

If we now make usfa f (]_2)] we Obtain the fO]lO“’ing cha.rac-
teristic formulat:.;v

£ h
W EED e = ke i pas
& '
'\i"; b
qx\\ = fk(x, S)K (s, t)ds.

e n K and if they satisfy
the condition (I13). A funetion k(z, &) reciproeal to Kz, {)

will exist, provideq the series in (12) converges uniformly,
But we have seen that this serieg converges uniformly when

Mb - q) < 1, where M ig the maximum of ’K(w, Ol in
B. Thusg, we have the
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theorem HIL—If K(x, t) is real and coniinuous in R, there
exisis n reciprocal function k(x, t) given by (12) provided thai
Mb—a) <1
where M is the mazimum of K (z, 8| in R.
13. Volterra’s Solution of Fredholm’s Equation.—Vol-

terra has shown how to find a solution of 2\
- ulz) = flz) -I-fbK(:t:, Hult)dl \\“\
whenever the reciprocal funetion k(z, &) of K{z, ) is. «l&l(?wn.
if {47 has a continuous solution u{z), then 0 L)

() = 50 + f K, (ot
Muitiplying by &{z, ¢} and mtegratlng,.\ve find

[Ic{\a:, Hult)dt fk(x, z)f(z)d;“v

_|..f k(x:, l)K(t tl)u(il)dfldt

a‘,

'\k(:c, MO
\\ +f [K(x, tt) + k(fﬂ tl)—‘u(tl)dh,

which r(’duées to

(14), & = f Kz, Hf(Odt + f Kz, tult)di.

w4

"\
Bu\t\flom (4} we have

\\"\ f Kz, t)ulb)dt = ulz) — fla).
Therefore, (14) may be written
(15) wlz) = flz) _—[ k{z, Of(Hdt.

If (4) has a continuous solution, it iz given by this
formula and it is unique.
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To see that the expression for u(x) given by {15 s,
indeed, a solution, we write (15) in the form

i
J(z) = u(z) + f k(z, Of @)at.

This is an integral equation for the determination off
f(@). The funetion reciprocal to klz, D) ig Kz, o). 'iﬁ\\'
what we have just proved, if this equation has n cont ifutis
-8olution, it ig unique and is givon by o N

(&) = u(z) - [bK(x, t)u(.!)a’.,!..\zT

But this is the €quation (1) from which weustarted. Thus
we see that (4) iy satisfied by the valuenof u(z) given Ly
(15).  Thus we have the following £ ©

Theorem 1vV.—Jy o\

@) K(z, 1) is real ang continuelys in B, K (, 1) # o.

b) f(x) 4s real ang continuous in T, flz) £ 6.

€) 4 function k(zx, 1) rgsip}bcal to K{z, t) exists, then the
equation (4) has one and only one continuous soluiion i I
and this solution, ;s given by (15).

The same rea%o?‘iﬁ’g applied to (13), considered as an
integral equation Yor the determination of k(z, {), shows
that, if 5 continvoug reciprocal funetion exists, it ig uniqiie.

14. Discontinuons Solutions,— W have shown the cxist.
ence, u"r{d?}r proper assumptions, of 4 unique continuoys
soh‘ltu{n“ for a linear integral equation of the second kind.
'I“!ug»%tegral equation may have also, in addition, diseon-
Wallous solutiong, To show this we exhibit the special

Jequation!
u(z) = f = tu(g)dt,

which hag one and only gpe continucyg solution, namely
ur) =0, We ¢an show, by direct substitution, that this
L Bcnen, “Integra) Equation

nd
N

%" p. 17, Cambridge Press, 1909,
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equation has also an infinite number of discontinuous

goliiieng given by
— —1
u(z) = Cx=Y,

where € is an arbitrary constant not zero.

EXERCISES o
soive 1he following linear integral equations: ':\':.\’
= "\\ o
1, u) wiry = + f ft — ajult)dt. Ans, ulzr) = Enfx
o ' 4 “‘
o * o °
Bionlrl =14 / (f — x)ult)de. Ana.\%g(M = cus .
._ 5: 1 \\\
2. ulxi = + 5 EIRT AT y N\ dns u(x) ==z
L2
3. winy = 2] f {t + x)u(t)dt,{‘ ,"' Ans. u(z) = =
4 uic) =1+ g & ‘;“ Ans. ul) = e=.
b ‘:‘
e 1.1 . _
B. wir) = er — g + 3 + 4\ (L}t Ans. ulx) = €%,
¢ &&.} 0!- .
6. ulz) = sin \T +i f tx u(t)dt. Ans. u(z) = sin z.
¢ \, lg
7. ulx) —g\¥ f u(t)dt. Ans. ulx} = z + constant.
£
8. "a&\r =125 — 422 4 f [3 4 6 — £ — 4(x — HTu(t)dt.
f\\; ‘ Ans. ufz) = e~
<>‘” 3, we 1,1 f7
79, .z_x_'_'x.__ = ; Ars. u{z) = é4
u(x) 2¢ 5 3 +2[ tw(l)dt ns. wix}

10. u(x) = 29 + 6r + f (bx — 6t 4 Dulihdt

Ans. ulz) = ¢ — .

11, w(z) =cosz —z — 2 + f (t — zyult)dl

Ans. u(z) = sin z + rsin 2,
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12. Using the method of successive appreximations find fiye SUere sy
approximations in the solution of Ilxerciges L2834 A siier
choosing w,(z) = g

13. Show that

ulz} = 4 + Bz + fz[C + Dix — Oty <\

where 4, B, ¢, D are arbitrary constants, has for solutio, (},}
_ ELPE T o “
T.L(SEJ = K16 ! + KQB N (\”}

where K, K3, my, m, depend upon 4, B, C, D, ,"::‘\’
14. Show that ‘

O
4 < AN
w@) = f(z) + f u(fJ[Z%(J)ﬁ{@t
a 1 \
7

has the solution
? AN\
“E) = 1) + 2 Shleste),
‘1 ) g

N
where the g are constanty dgbé‘mﬁned by the equation
NS
P

5 N .,
Em{;\ f ar,(t)ﬂ.,(_t)dt:l — Ay f BaOfGat (¢ =1, 2.
1 /3 /\ o

N\
&&”‘} [Heywood-Fréchet.].
P ﬁ\
Q"
O
{,\"
o &7
\‘V
O
D

O
N4



CHAPTER III ~
SOLUTION OF FREDHOLM'S EQUATION EX~ .
PRESSED AS RATIO OF TWO INTEGRAL SERIE§ \)
IN A \/

L ¥

ool
7%
< R

15. Fredholm’s Equation As Limit of a Finite, Syste:m of

Linear Equations.—The solution given in the previous
chapter for the equation ) '
/) AN
0 u(@) = 1@ + ) | Kl
23 X

has the disadvantage of holding qﬁfy for restricted values
of A, Tt is desirable to have, if possible, o solution which
folds for all values of A. 8dch a solution was given by

Yredholm in the form NN
BN 1N TN
w(x) Oastav+ .

the numerator anh\}enominator being permanently con-
verging power series in .

a) The Syste of Linear Equations Replacing the Integral
Egzeata‘onw—&%gfore stating explicitly and proving Fred-
holin’s.yesult, we give an outline of the reagoning which
led hith to his discovery.

:initie the interval (ab) into » equal parts and call the
_Peints of division t, 22, . . ., ta-1. Then
B bh=ati=at+hto=a+2h ..., t =a+nh

Replace the definite integral in (1) by thl} SUI_II,'_COITGSD'C'H#-
ing to the points of division (2), of which it is the limit.

We obtain the approximate equation
23
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u(r) — MK (z, bufty + Kz, tuit) + .

T K(r, tou(t,)] = Jien,
Since this equation holds for every value of &, it must b
satisfied for g =1y, &, . . » o We thus obtain th:
following system of » linear equations for the detorminaiion
of the n unknowns wldn), u(ta), . . s u(tL): \

u(t)) — Ak{K(fh zl)u(’:l) + K, Ez)u(f-z) + . .:\
K@, L)u(e)] €
3) ult) MLK (8, t)u(ty) + Kty tohuity) + ";"

+ K(te, )y & 1
o

N

w(t,) — MK (¢, tu(ty) + K(t., L)) + C
f{({i}, Lult)] = £,

u(tn_), we can plot u(t;) (; = 1, A 7} as ordinates and
by interpolation draw curve(z), which We may cxpeoet

Fig. 2.

to be an approXimation to the actug] solution, We solve
(3), maktt}&iuse of the abbreviationg

.%;G}’)':f" »oully) =y » K, 1) < Ky,
Den?te by A the determinant of the

™

(’3{.‘: We have
.\ w4

coeficionts of the u; in

C =Ry g, MK,
TMEn -k, L Ny,
a=l-oo0 T

TMEn MK, K, |,
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Denole by A, the first minor of the element in the »th row
ardd pth column of A, Then, from Cramer’s formula, we
sidain, by solving (3) with respect to wuy,

2 fAhi
) N\
41wy = yprovided A= 0, K =1, . . . |«
A {6 ¢’
Y
by Lamit of A—Txpanding the determinant A, @v&f&)tain
H AQ " }-( ( ’k.
a= 1 = A Ruh g DRy N r+ ¢
Z:l + 2!1',JZ=1 I&"' 'R” "\\\
Kjl R K]n
+ _ 1 J‘lh’?’l:t\e','
I
:“’; Kﬁl - I{Tﬂi

oo’

»:"
If we now let n increase indeéfinitely, we see that each term
of this series has a deﬁmt@ llmlt So that, at least formally,

mA =1 —?\f]((% ﬂdﬁ

o 0
K(él, tl) I8, 1)
2} (b 12) bty
¢ %i/“/-/h K, b)) . . . Ky, &)
‘;‘x:"g_' . . N . . + . . . .
O Kt tr) . . . Kt &)
J.{\ ' dbydisdts -+ .
~AB) = D).
AV
\/ D) is called Fredholm's delerminant, or the determinant
of &,
¢) Limit of Aw.—The expression for A,, is similar to that
for A,

1ﬁ>\2 Knh+z,§; hz];f:g: A
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where ' means omit § = Henee
{6) lima,, = Dy,

He—r s

Again, from rules for cxpansion of determin; i,

= &, -3l K I‘Ml
| ‘-=1 o Ay o’\t\..
A Km Km' I{m' :~’§\ ”
+ a1 2 hy K, K K|+ A\ Dl
= K iv ]{Ji }\'.I'f N\ 3

=1

Put ki, < A, m'\"'
If, as n Increases 111deﬁmtely we let (4, {) v ny in sueh o
way that lim (te, £) = {z, ), we find, '&Meast formally
K(a?\ ¥) K(z, 1)
j— -— 2
(7) hm SJF,, = MK(z, y) ?\f ( (3: ) K )
K(x y) Kz, io})]x(:r £)
K(ﬂl, y) K(‘},vfl) Kal 2) dtfldfz +
Kty y) K 1) K (b2, t2)
=D%mw
Thm expression forﬁ)(:r ¥i A is calleq Fredholms Jirst
minor,
d) Limgt aof uk 5 YYE £an now write (4) in the form
\ % Am 1fil A
(29 = -+
o 3
A
\s.' = ,f hDLa
{\ .fk R 2
,..\‘fhléh in the Dassage to the hmxt A8 7 — 9, becomey
wlt) = f(t) + Doy f HOD, t Nar.
But ¢ s any point of division,
* and write
(9) “ (2} = f(z) 4. B f TOD, £ \ay,

Then we car replace ¢, by
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"Uhis result has not been cobtained by a rigorous mathe-
astical procedure. However, we arc inclined to believe
hat the above expression for u(z) is a solution of (1). This
i,u lief iy later shown to be correct.
¢} Fredholm's Two Fundamental Relations—We will now
develop Lwo relations which will be of use to us later in
obtuining a solution of the integlal equation (1), We recall
ilie theorem, fundamental in the theory of dr\t{,rmman‘t;,\'
et the sum of the products of the elements of any cql?zmn
iy the corresponding minors of any other colump, is Zero,
“his theorem applied to the determinant A glves
A m\
(1 = MEDAL — MKdw — D) MR = 0,
SRS
where ' means omit ¢ = §, k. Malgiﬁg"usc of the relation
&, = RO, i), we find » \

-

(1 = MK )hDry — Kyt — 2”)\}521{”@“ = 0.

ad
S g

1ivide through by kb, simee & # 0. The passage to the limit,
ag n -— o, gives frorq\the last equatlon by (6} and (7)

N
Dt ty n) — kK(i\;,, DY) — A K(z iD{, ;A )dt =
This last uahon holds for any two points #;, & on the
inter vai»{? Let us put then 4 = z, {; = y and write

]
(FOR D('v, ¥ ) — AK{(z, D) = f K, )D(x, & Ndt.
RN
M‘Ef‘ﬁis is called Fredholm’s first fundamental relation.

Now apply the theorem: The sum of the products of the
elements of any row by the corresponding minors of any
other row is zero. This theorem applied to the determinant
A gives

(1 — MK;)As; — MK b — 2, MK = 0.

i=1
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Proceeding ag before, we find

h
Dity, 4y 2y — MK (t;, 6)D(A) — 2 K{t;, D, 1 nuti - o,

This equation holds for any two points ¢;, ¢, on {ab). Tot i
put then ¢; = %, & = y and write N\

b A ¢
(11) D(z,y; 3) —AK (2, 10D\ — f K, 0)D(1, Mty
« N\

This is Fredholm’s second fundamental relatip,. ~\ -

186. Hadamarg'g Theorem.——We ROW procegd bo estnlif;.:
rigorously the results of the Preceding article;\"'To this e
We need 2 theorem dye to Hadamard, Lo’ cstablish th,-
theorem we make use of the following WV

Lemma,—1 F all of the élements a,-g-o\frf,\the determingnt

4 3
€1y Qo N A1,
A = | @ agz’.g R Tap

a > 3

WAL
anvl’.?;'xg AT # S
are real ang saizsfy the contditions

U2 @ tat b e 1

then 714«

We give first tWo special cases of
the lemmg which have 4 geometrig
int_erpretation.

(?"=1, CE. ;”‘JJ

N Fro. 3 of a system of rectangular eoordinates,
'n\' \ . b

The coordinates of Py oand Py are as

?ildicated in the figure, The area 4 of OP PP, is given
by

T
T2 ¥a

4 =
If Op, = OP, = 1, that is, if

TPyt =g and z,? . 4.0

=]_,
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ihew 1t is geometrically evident that the greatest area is
shbifained when the figure is a rectangle, and then the area

5 1. Hence, we have generally | 4 | £1.

2} n = 3. The parallelopiped OP,PyP; has one vertex
at the origin of a system of rectan-
gular coordinates. The coordinates
of 21, Po, PP; arc as indicated in the

. 4
figuic.  The volume V of OP PP, A\
s given by Oy
\Y
T i &1
¥ = &y o 2o o ”‘\\ '!P{XF’SI'ZI)
Ty Us 3| FIG{ 4.

I 0P = OPy = OP, = 1, that is, it /0w
LI y12 + 2.* =1,z + yzg | 24t =~1’,§$‘.;2 + st Tz = 1,
then il is evident geometrically that'tHe volume is greatest
waen the figure is a recta.ngulgn’zpéra[lelopiped, in which
case the volume is 1. Hencepye have gencrally

| I’ 1.

Froof of Lemmg.—AQen, . . ., @q:) is a continuous
funetion of its argu@en’ts dre in the region ¥ defined by the
equations (12), "i‘hese eonditions insure that | a,, | < 1,
and that the segion ¥ is bounded and closed. Hence A
reaches a maxihwmn and & minimum on the region %. The
Inaxitnu;x{:%q"d minimum which we are seeking arc the so-
called absolute maximum and minimum. But if a system
of valués furnishes the absolute maximum (minimum) for
Agjbfurnishes also a relative maximum (minimum), Hence

<”t{h6 ordinary mcthods of the differential calculus can be
used for their determination.
Now if a function

f(x;, Xay, . oo . ,xn)
of n variables, conncceted by k distinet relations
diler, . . L, E) =0, Gomy, . . . Em) =0, 0 . L,

o, . .. 2a) =0
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has & maximum (minimum) then the n first partial depi

tives of the guxiliary funetjon
F=f+11¢1 + Ay + . T Mg,

where A, Y + A are constants, must varish

For our problem, f 4,2 =g,

¢r=2ﬁrsz“1 (?'= .. ,,?.‘)

1416

a=

‘\
and the auxﬂlary function F becomes \ >
:’50‘
F = A+§l2 @+ a4 +u{,,\— 1.
For a maximym (mlmmum) by the theoreth juqt stated, wn
mugt have \\”
oF E)A AN
ank = + b "IJ;, = ’O ar
(13) Ay + M = 0 (J.: '39’5‘;&1; 2, .. » oy m),E

where A, denotes the mingf of Qi in A4,
sides of this equatlon by &% and sum Wit
2

for kb = . ?1\ We obtain
AJ\:{J&O sinee Za;, =1
or o A=y (7 = N
Suhstltutc’\thxs value of ), i, equa,tmn (13) Then
& Ay = day, Gk = <, nh
Whe@ tfm determinant
',,\~:'{' A 4y, | -4y,
\,..\;wi Aq dq . - - A,
G P
i o - . it -
GEHEEU(;S)“ HEDRICh, Mathematwai Ar1a1y3is,” vol.

Multiply both
h respect to /-
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adjoint to A, is equal to

Aayy Aay . . . Aay,
Aﬂ,21 Aagg P Al‘lgn
Aaul Aﬂ-nz L. At’;‘.,m .
The first of these determinants is equa,l1 to 4=, The™,*
cond reduces to 4%+, Henee e\
N/
An-{-l —_ Aﬂ—l <’s:’§

fiut the maximum and minimum of A mustmtlsfy this
cquation. Therefore, the maximum of #\Ns + 1, the

minimum is — 1, and ,\\.,
4

lal <1 &°

Hadamard’s Theorem,—We are néwin a position to prove
& inore general theorem due to II&damard If the elements
b of the delerminant \\

S

TN
>3

& 7

ol
b

by 515 .o b,
..b’::l\bzz <o b
3

S Mba b . b

ure real and bal&j) Yy “the inequality
x'\‘,' ]baki g M

{
S

then {\\i”\' | B | < Mo/ nm,
Pr&of —Let
\;fhl Fht+ L Fbt=s, =1, . . ., %)
Case 1.—8ome one or more of the s vanish, say s, = 0,
Then by =0 (i =1, . . ., n). Thereforc B = 0, and

the theorem is proved in this case.
Cuse I1.—None of thes; vanish. ‘Then each &; 18 positive,

That is $1> 0,8 >0, . . . ,8 >0
' Batwzzk, Loe, ¢it., §6, 1.
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We now consider the determinant

b b
I M
R N
Ve ar D R
Ve o Vs, <\
by bea? : O
forwhlch—;l——l-. . +—S“T-—=1. (E=1, . ™.

N
es all of the conditions of «yp

W

Thig determinant satisfi
lemma, Henece

1812 vos
But, since [ ba |< M, (¢
we have from $; = byt - AN B2

& < nMe2 (?:’9:.1',‘ A )
Therefore, |B| g,gzgii/iﬁ.

17. Convergence Proof»%’zWith the help of Hadamuard's

theorem we can DOW piGve the convergence of the series for
D) and D, 15 0

a) Oonwergence\éf”b(?\).——l)()\) is given by the series

(14) “{)fk)’ =14+ Zl(h-l)"::—;Am wherg
~{\ b 3| Kt ty), Kt t,)
(15){5-\=/--- """""" dh...dt, (n > ).
N * Kl ty). Rt ¢))
a \%

\/We have assumed in §8 that | K(z, ¢

the c‘le_terrninant in the eXpression for A, satisfies all of the
conditiong of Hadamargg theorem, apg hence

b il
]A,,Ié_[ C fM“\/;Edtl CLLdt,

= VM b — gyn,

<M in £, Thus

N
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I'hen _
I(ml)i‘fanlgﬂfu(b - a)wm%?’f =C,.

This identity defines C,.

e now proceed to show that the series of which €, is the
general terin converges. Applymg the ratio tebt we obtalp \

¥ ¢\

(.'(v::.i.x - M@ — a)])\[\(l + - ) \/n +....1 . \\ .
his ratio has for its limit zero as » becomes 1nﬁmte‘ “Hence
the series of which €, is the general term convegggs. Conse-
quently, the series for D(A) is absolutely apd permanently
souvergent.  We state this result in the (q}luwmg.

Theorem L—7The series D(N) is an {bg}lutely and perma-
nendly converging power series in AN

by Conrergence of D{(a, y; N). —We have

{(16) Diz, 5; \) = zK(z, y) += 2( 1)n B (z, ¥), where

#=1

[

Ky Kz, 6} . . . K(z, t,)

(17) Bu(z, y) =

IQ(Zi;‘y) K(ilr tl) LR K(il: i‘l’l) dil o .. dtn.
”\ K(fm y) K(tn, 1) o Kt ta)
It1 15 fbmetlmes conventent to write
~O° D@ g N = 3 (~ 1 B, ),
4 =0 n!

where we consider Bo(z, 4) = K(x, ) and 01 = 1. The
determinant in the expression for B, satisfies all of the
eonditions of Hadamard’s theorem and hence

b b
B, £ C (n4+ 1) Mty . L dt, =
{

\/(n ;l;"j,)iﬁ Mnt1(h — a)®
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Then
\/(n 4+ 1)

!

) antd
(~ 1)“ nf

B. gMn-H(b ay" Nn+1

This identity defines E,. We now proceed to show u?‘-.:st.
the series of which K, is the general term converges.  r- ~
plying the ratio test,

N\
2\ A

Ty b n+ L
L—; = M(b — a)m\j(l + ) \/n S

7%
< R

The ratio has for its limit zero as » beeornes inﬁnit{x’: Flooves
the series of which E, is the general term convefg}s. Coprs
quently, the series for D{z, y; ) is absoiutaly and penai-
nenily eonvergent in A and, moreover, um fmly convergent
inzand yon B. Hence the ;'\

Theorem IL.—The series D(n:, #,)X) converges absolutely
and permanently in A, and, moyeoz;er, uniformly’ on K-
afz<b o<y <h N

18. Fredholm's Two Fundamental Relations.— e will
now proceed to prow, the two relations:

{18) D{z, y; ) J\M{(x DO = )\f Dz, K@, ypdt

(19) \ fK(a, DL, y; W) di

wihchsswére previousty heuristically obtained.
a\Relation between the Coefficients A (z, y) and Balz, ¥).—
Substitute in (18), in place of D(z, ; A} and D), their
\eue@. expressions. Then both sides of the equality in
\ / {18) become power series in M. Hence, if (18) is true, the
coefficients of corresponding powers of A on the two sides
must be equal. Conversely, if we can show that the
cocfficients of corresponding powers of X on the two sides

are equal, then (18) will be established, Making the
substitutions, we obtain

! Goursar-HEepRick, “Mathematical Analysis,” §173, nate
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| e At
M )+ 3 (~ 1 Bala, )
n=1 )

—\E(z, y)[l 4 i (—1)"4 "“]

- [k, y)[xK(x 0+ 3 -0 R o

O the right-hand side, the series in the integrand is ani-
furmily convergent and remains so when mulhplred by
#it, y}. Therefore, we ean integrate by tcrma qn& write

[ Kok e +3 -0 e DR

17 in this Qecond integral we put #’ rg\\-}- 1 and then drop
the prime, we obtain \~

o y ‘om

:1; i—1)m Aﬂj] B (e, y) — K(I y) 2( 1)“
_ f K, z)K(J,‘y’Jdt"

a1l b
+2’(&1)”_ 71),f a1 {2, DK, y)di.
Y

Compare now the cocflicients of corresponding powers of
A on the tw ‘sides. We obtain

(20) \mef,y) = 4K ) —n [ Bale 0K i

I x\e establish the truth of this equality, then {18) will be

" \hown to be true.
\;” The relation (19} treated in exactly the same way Icads

to the relation
b
(21) Bu(z,y) = A Kz, y) — ﬂf K(z, ) Baa(t, y)di.

Il we can establish the truth of this equality, then {19) will
be shown to be true,




\/
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b) Proof of (20) and (21).—We prove (20) and alse 210
hy showing that the explicit expression for B.(x, 4} con by
proper expansion and change in notation he written [n
the form indicated.

The explielt expression for B,(z, y) is

b b P
B.(x, y):f o f O
) > . :“\\ ”

Kz, y) K{x, ) . . . K(z, i) '\’3’«V
K, 9) K, t) . . . K(t, n) &\ .
K(te, K 1) . . . K(t] a

Develop the determinant which appe&(gl\n the integrand ia
terms of the elements of the first f;éhémn We obtain

Bz, y) = f - .[:.K{x, y) X

mfg‘((l, 1) e K(tl.! tn)
TR U

0'1‘:; K(tn, 1) . mt)

Ot
+Z(\“1\)"' f f Kts, y) X
\

| > Kz, t) ... .. Kz, 1)

';:\;“ Ky, t) . . ., - K{ty, 1,)
K(t,:.._l, y) Coa K(fq‘:_l,lt“j dfl P d!’n-

Kltisny) o . . Koy, t,)

K - . .. K 1)
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"Whe first term on the right reduces to K(x, ¥)- A, accord-
ing to (15). In the terms which occur in the summation
i pluce of

by tigsy bivey - . .,
WL t, t.', f§+1, .. ,tn_l,

wihieh means simply » change in the notation of the variablds,
of integration in a multiple definite integral. We opfain

=} A w'\\'

Kz, t) K(.t: e I)K(:c t)K(m s) . K(z, z_l)
...... e .Q,:\‘

E@ o) .o oo AT Kty fa)

o8 didey . . . dlyy,

which may he wrltt(,n by brmgmg t into the first column

s

" (n 1)2i-1 f\\ . fﬁ(z y) X

Kz, t) If(;?:'c,) . Kz, )
K(tl,n}m], 1) o Ky ta)
4
\\ ) e atdl L At
Aty ) K(taes, 81) - . . Koy, o)}
~O

N/ This last expression shows that all of the n terms of the
summation are equal, Furthermore, the integrations may
be performed in any order, We then integrate first with
respect to iy, . . ., fa_y. For these integrations, K¢, y)
may he regarded as a congtant factor and may be taken
before the (n — 1) — fold integral, so that we obtain
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b b b
—n\/‘K(f,y)‘/-‘..‘/‘

Kz, ) Kz t) . c s Kyt
K, DK@, 1) . - Kty 1, .
e e A g
...... ¢\
C e e\
K(t,_y, 1) Kty ) . K(t._,, tust) "
which, according to (17, may be written 2 N\
b

\*
TS Baealn 0K, e O

Henee the development of Bu(z, y) gins\\:

b L _
Bz, y) ~ A,k @, v) — / .Br;«}(:r, DK, yyar,

which proveg relation (20, Therefore (18), which is Frui
holm'’s frst relation, js trye. N

ake again the explicit exprossion 1op Ba(z, y), but this
time develop the determinant iy, the integrand i terms of
the elements of the firgf you, Then, prog

N

we obtain for the .de\\‘r.elopment of B,(z, 3

B, 1) = @y Kz, 4 — f Ko, 08,1 Wit

which proves fhe relation (21), Therefore, (19), which is

Fredholm’s'}ééond relation, ig frue.  Thus we have cstal;-
. N\ .
lished tha.followmg.

Thg&em III.uBetween Fredholms delerminang DAY and
F !fgfihblm’s Jirst mingy D(z, y; A) the f ollowing doypie relation

~kolds:
(8) Dz, y: 3y - Mz, y)byy < .
)\f Diz, 1; 3 K, y)dt

= fbK(x, DD, y, A)dt

eeding as hefore,
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19, Fredholm’s Solution of the Integral Equation When
Diny = 00—Fredholm’s two fundamental relations, the
eotions (18} and (19}, enable us now to obtain a selution
of the integral equation

(i w{x) = flx) + )\fbK(x, Hultidt,

Weo obtain a hint as to the method of procedure from the < \
method of solving the finite system L\
o
(i ; — )\hZKUh{} =f ¢G=1, ..., n).:,":,‘

24 findd 1y from this system we first multiply by,&,;, ‘and sum
with respect to 7. We obfain

21{ A — )\hz szug ‘;\ Ef A

=1 j= 1
\,i-'haf_:nce 1 \/
i) )":‘
Yy Aug = Dofs Aipe
ai=1

T Ny NS
NOwW .

Ay = hoy{by definition (see §15, ¢)
e\J
¢ \\ b
]imNZ;h:Dk.- = f Diz, t; Mdt by (7).

abg 51
Lot us ;{*(g}.v"'follow the analogy. Write (1} in the form

and

\"4

b
\§ u(lt) =JjO + ?xf K(t, Hulb)dE.

»\ w,Multlply hoth sides of this equation, which we supposeis
satisfied by a eontinuous function u, by D{a, t; %} and then

integrate with respect to ¢ from a to b We obtain
b b
(22 f D(x, t; Nu()dt = f D(x, 1; Nf(t)dt
¢ ba b
+ X !f Diz, {; MK, fu(b)dédt,
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B

The integrand of the double integra} being conting ;. iz
and £, we can interchange the order of mtegratio), - |-, the
double integral angd write it

f bu(f)[k f bD(x, LMK, By ]rfE,

which, according o (18}, becomes

b 7
A [W’ N = ADWK(, G)J“ff)df- O
Hence (22) may be written A\

b b .\\
f Dig, ¢; MNu(Ddt = f Diz, Mf(tydt \

b N
+ f Dz, &) u()gg — mgx{f Kz, £uizuie,

X

which, on account of (1), reduces o)

) oY
0 = f D(z, ¢ x)f(z)d;.:-;‘:a(x)[u(x) =f(9:)].

We solve now for u(z),ﬂun'd’er
We obtain

”‘\
O \
(23) u(x)‘ ~=\ﬁ‘x) + f 2(_3"1)_!6_5_)!@_)&

Hence, if higa continugyg funetion of 5 which satisfies
(1), and it PN 5 0, thep u(x) is given by (23)

It TR for g %o show that also, convergely, the
expresgtén for u(z) given by (23)isa solution of (). Wedo
thls':h‘y direct Substitutiog Substitute the valye of u(z)
i . e obtain

NP 4 NS
\f(x) + [ ——(—xﬁ(—ﬁ')—{'—gdlﬁ = flx) + l‘/bK(R’: f) X

"D, & Nfce)
’f(t) +‘/“‘ "—__TD—EA—J———-TE&] dlf.

Mathematical Ana]ysis,”

the assumption DN = .

1
GoUR5A§IIEDRJCK, “ vol. 1, s123.
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5.5
ek the last term up into two parts and in the double
tegiel change the order of integration. We obtain
foe BN
H Doy dt = )\[ Kz, Of (1)t
& I
+ i e [ K 000, 5 s
i1, according to (19), may be written
m ZRSHOIN b . L\
7 : D\?\) dt = A Kz, Df(Ddt AN
s f it )[D(:r £ - NK(, z)Dm}ss
&

this last equation is seen to be an identity. Conse-
ily, the expression for wu(z) given by\'(23) satisfics
wtion (1), Thus we have proved the j‘g[fowmg theorem,

»h is called Fredholm's first fundam}n!al theorem.

Theorem IV.—If O

{ay D) = 0. a."""
ity Kz, t) is wn!muoiw,w R.
() f() is continuousan'l.

i

then the equalion - \“\
(1) u(a”)\A f(a:) + A f K{z, O ulf)dt

has one and o\nlg one continuous solution given by
D {x, £ A)f(E
23) x\ w(z) = Fw) + f ("’3}) ?\)H )t
O
tbher‘é\\D(x t: A and D(\) are absolutely and permanenily
r@we?geni integral series in X, end D(z, 1 ;A converges
\"\Wirformly with respect o x and ¢ on R:a L i ba Sy < b
We have at once, for the special case f = 0, the foilm'umg
Corollary—If D(\) #= 0, then the homogeneous equalion

(24) w{z) = )\fbK(:c, Du{f)dt

has one and only one continuous solution given by u(z) = 0
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Let us point out the analogy with (he finite Conof
linear equutions

Uy — )\}121{,-,- wis=fo =1, ,
i=1

with determinant A,
If A = 0, then this System has one and only o, ., IS
If f; = 0, then the only solution I8 the frivig] PN

U = = Uy, = (), ,":'«.

But the limit of A wag D). Henee the results 49, . 1
IV and its corollary gre exactly what wag t;il’i\w e ]
fromi the analogy with the finjte system, \

20. Solution of the Homogeneouai uation Wi.ep
D = ¢, D)) s 0.—The diseuseion\fi to this poins 74e
been made under the assumption {D(‘)t)'x 0. Let us oo
See what happeng when D()) = OAfTst with respect to i
homogeneqyg €Quation (24), oSN

Let X, be o value of ) fop which

(26) LR =,

We now consider{»t-he solution of the homogencoons

integry] equation (%Q for this Particular valye of x:

\fu:(w) = AofbK(x, Dult)dr,

We obtainNy solution of (26) hy means of Fredholn '«

second fu@démental relation (19), which Is true for g
values '&\?\ and hence for A=, With thig value of i,
0n aecount of (25), equation (19) becomeg
Ny

a \Y% ’
7 Daygay oy S K yng, ¥ A

The equality holdg for ev
and, therefore, for y =

L 3

Y value of o the interyy] (ab}
Yo Then

. b
D, o a) = 3, f K@, 0D, 4, Ao)dt,
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But this is just the equation (26) with (z) replaced by
e, war M), Thus we see that u(z) = Dix, y.; X} s a
sohision of (26}, Moreover, this solution 1s continuous,® for
Dis it M) is uniformly convergent in x and y and its terms
avie coentinuous.  But D(x, y.; A} may be identically zero
in #, either on account of an unfortunate choice of y,, in
whick caze we could choose some other value for y,, or be: &
cavee Dl g h,) = 0 in = and y, in which case the aboye |
soindion reduces to the trivial one u = 0, ne matter how We\
thieose ,.  We have thus proved the following: O\ )
orem V.—If D(x,) = 0 and D(z, y; No) £ @ ’éhen Jor
L groper choice of Yo, wla) = D{&, Yor Ao} €8 € c;ontmuoub
solufian of AS

- xafbK(x, Hu)dy
s AV

aad ulx) #£ 0, \V
in the theorem just stated, the, condmon Dz, y; ha) #0
v be replaced by the cond&f*lcin D'(\) # 0. To show this

we prove the following a8

(27) f b;gu\“,\x,- Ndr = —AD'(\).
l\\s.'

WP prove (27}110\' making use of the series expressions for
D'y and DI‘:L ¥; \). We have from (14)
"\‘

XS
\"D)\)—1—~)\A + Aznger :

™
‘o

v,here the A, are given by {(15)., Then

2

A
Dy = —4, + N — 2—!143 + .

ey

n=0
! Goursar-Hepgick, “ Mathematical Analysis,” vol 1, §173.
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In the &xpression for Ao

. L b
An-b]‘."_"/‘ oL f

k(t;, !1)!{((1, fs) - K, tagr)
K(fﬂ; tl)I{(tZJ tE) [N KU:}; £N+I) s N
ey L - e NN
oL L .F - L . . ;,~\ v
KU?H—I; fl)K(fu-}—l; 32) L. }‘-(fn + 1y {u-f-l:] % D
n plage of byby by, . T S RO
hut z, £, by, . . ) Iy, . \/\\
Then A
b b \
An-{-]’_ = PR "2\\.’
A i }\
Bz, 2) Rz, ry K($1,)
Kb, 2) K1, - K
) Kt O PO "

Kltn, 2) K1, 4,) NN, (¢, £)

. : ‘ nitee"\int-egral We change the order of
Integration and inte }\e first with tespect to gy,
dt,, whenee \\ )

f] EE {J‘i,‘ dx,

K(tn, £a)
(17, becomeg

\il}ieh, OR account, of

'GOURSA'I‘-HEDRICK “Mathema.tical Ana,]ysis,” vol 1, §193. Pikg-
¥ o0 !

4 .
570 °F Functiong of Rea) Variab]es.” vl
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Therefore,

w w 5
D) = — 2(»—1)ni,f B.(x, 2)lx.

=)

. z A :
et 2}0( —1)" ", Bulz, m)ds

N
. & sorics uniformly convergent in . We can then mfers
g N

¢henge the order of writing the summation and the intoghu-
tiont in the expression for D'(A) and write O

b a &N
I)!(A) = _f 2(_1)1'; :t} Bn(_.’l’.‘, I)({]‘P 3
T g=0 ) .

Muitiply both sides by —», and then b tlfj) wo see that,

indeed, N
b { & :
2T) f Dix, z; A)dz f~’:—,r\?\D’(7\).

Let us supposc now that pf@.o) = () and D'(A;) ## 0, then
gertainly Ao # 0, since D{@d= L. Hence, if we write (27)
with X = A, the right-h&nd side of this cquality is diffcrent
from zero and so alSe the left-hand side, and, therefore,
Dix, z; %) & 0Gn°z and, consequently, D(z, ;5 Ao) # U
in z and y.. Mence, indeed, in Theorem V the condition
D{z, ; %o) £ 0 may be replaced by D)y # 0.

We refmark further that if u(z) = D(x, ¥o; Ao 18 & solution
of t-he:]}bfﬁogeneous integral equation (263, then Cu (), an
arbifrary constant) is also a solution. Thus, there are an
iftfinitude of solutions which differ only by a eonstant factor.

'.\J'We shall later show that there are no other solutions.  This
\”\3 + is in analogy with the finite system of linear cquations
i
ws — MY Kquy =0 G=1 .. , %)
=1
with determinant A. If & = 0, while not all of the first
minors Ay vanish, then these n equations determine unt-
quely the ratios of the wy, . . - , #n that is, u; = Citn
1 Gorrsar-Hepaick, ' Mathematieal Analysis”, vol. 1, §174,
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G=1,.. y ;O = 1), Now, A = ¢ COMFespng- ju ty
D3y = 0, while ot all Ay vanish Lorrespan s g
Diz, 4 2,) & 0.

21. Solution of the Homogeneous Integral Ey.ttion
When D) = 014 Temains to considey the cnse

flecessary, to congider the minors of higher r11'¢j;€rt"?:-.!' A
Accordingly, We have tg consider, in the tron,t.n{"of ol th
Integra] tquation, the limits of these higher MHObEs of s
In what follows Jat us use with Heyw;obh-’i’rmrhet AR
quation De Fredholm,” Page 53) the notation
Ko )Y ks, ! {
51,8, | SR A N BRI\ T o
K(tl,zz, . .,z,.)t e M o
Ko,y - Ko, ) [
{a) Definition of the P inor of DN —T,et

T\ Ce gy B, . ¢
K(...’,,. 3 ®p, by, , L
.th .,yl»} L ,‘yp, tl; A ,fﬂ)dtl T n’{"
wi ,’\ |
.'\ St ey y_p yl; . ‘. , yp
’{fh\.er;vche Pth minor of Den) 1 defined by th, infinite soriog
ng..: D(xb . s xp A) _
yl: , yp
>
A TR
e " Yi » Yo
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Iy mieans of Hadamard's theorem we prove, exactly as
befors, the

N7
Thaerem VI—The infinile semesfor D ( PR )\)
¥, « - - 1 ¥Ys
ix abecinlely and permanently eonvergent in X, and uniformly
conrerel i Zy, . . ., g Y1, - . - s YofOr 0 S, X by

Sh{nB=1,. .. ,;0)
fury—When two of the x's become equal, sy *. = :c‘.;
ar when fwo of the y's become equal, say y: = vy, then D?{\'n, Y5

a =

=
{..

’(;.‘: T
M) rowishes.  Tor then in the integrand of B, (xl,",'. ! ”)

3{1\\’ - ¥y
two rows (eolumns) become equal. Therefore;
£ NY;
A, FIE S T xp) = 0} and henr‘{’ Dp(x; Y, )\) = {).
WL oo o Y N

In 1ika manner, if in Dy{x, y; M) t.w:cubf the x's or two of the
¥'s aie interchanged, Dp(x, Yy d M) thanges sign.
b f’mmm!zzatmn of rhe wa Fundamental Relations.—

s o« - . 3 Tp
Expund the determinafit, in Bn( b ! ) according
m\ Y1, . - « 2 Up
to the elements OK@% column g

B (L ) e [ ]Ee

P t P n
Kz g a1y Tagplr o P )
(a}%m --ryﬁlsy6+h--'iy1’!tl""’t"

‘R\

2(-_ 1)p+n+gK(£‘_’ ’!Jﬁ) e

A\ S

\}((IT], co e Ep tl; PR ,f,'_,l, t,‘+], Coe e :“)]dzl L dtn
PPN 7Y

Y, .o yHa—1, yﬁ+1; e Y tl!
In the first sum, K(z,, y,) may be taken before the integral
Sign and, according to (28), the sum becomes

— oy d Iy, - - . ,xa—lg Totly « - - lxl’)'
2( 1) + K(Ia! yﬁ)Bn( L Ve Yprn, - - -  Yn

a=]

N\
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In the second sum make a change of notation,

In place of b, Tiys, tita,
write i,

_—
,Il"*'lp o )fﬂ--l

The ith term of the second sum becomes

(= Drritsg(y Vo) X A
K Ty, oL, T o, Xr, tl, L '”'\\";.
LE7RNN 1 ¥-1 Ygr, L s¥pley oo \J

Bring the column ¢ between the columng rfﬁ\

Va1 by § e
P—-8-—-1 transpositiong of columnsg,

gel, then, for
the ith term of the second sum \1\
A
- A(t; yﬂ) X O\
No/
L \
K(ﬂ?l, ... xﬁ_l, Ts, :rﬁ-HJ R 3 Ty, fl, ey, {u--l}
~ )
¥, oL Ya-1, ¢, ?7’3—!-1;\}{&- C o ¥s ly L s b
Hence, aj] termg ip E are equal and this sum may be writ-
i=]
ten, if, moreovaer, xé&inﬁegrate first with Tespect to ¢,
zn-—l,

]
-~ fK({ J){f .. f
o\.l K
x],,{o\{,o ....... Tt e - L, ,.”Cp, tI} - . ,in—l)
S r Yo, 1, Yer1, . . . » ¥z, tl: s

L] tn—]

‘w\‘* dfl - e, dfﬂ_.l ) df,
\)ﬁi]ich accmdmg to

B._, (x“ R T xp)dt.
Y1, . oo }?fﬁ-—l,t, yﬁ‘i—l, T G Yy

(28), reduces tg
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Thus we wrrive ad the formula

N Xy, . . . 3T
31} B ) =
( ' (yl, - Y

B
P -i:_:-.':fj\'(_r’. i )B, xy, - -y ety Tatly - - - :x.ﬂ)
L VI - Ysu ey - - - o B

a1
£
UL . Tl o o oy R 1y Tty - - - 3 & N\
—n R, yﬁ)B,,_.;( ! T :’ ! ! ) .
A Y1, . - -y Y1 B¥grl o - 1 ¥ t~\.
N
.. . . ,"\\ v
In il manner, by expanding the integrand ) of
. l":‘
B, {'“" - i %2 Y g ceording to the elements of therow 2.,
\doo - o U {(
o O
W oot \ T4
A
: X1, o . - 5 Ep 'x:’.\
(32) B. N
Wiy - - - 2 Hp o/

Il >
% rmu—l) Latly + - - ' &p

B T Ty, . .
T e ,BI. B il R Y
z [ VB, 7 MR
8=t ' ’ L a...)’ﬁ) ﬂ(yl! 'v:‘,'.;' s Ya-1s Ya+rt, - - 3 Yp

— ’ . i I, £?.:";‘“' y La—1; t! Faily « - - ’xw)dt.
faJ(l K [ f)Bn-l(?h{ ) ’ . ,E'i’ﬁ—lr ry& yﬁ+1, R
g"\\
If now we mull:x@*'bot.h sides of (31) and (32) by (—1)*
A and sum'ﬂivi%h respect to n from n = Dton = oo, we
\\¢/

n!

obtain, "off;?i}:cmmt of ihe definition giver} 111 (30):‘““‘
fnlhm\ikig\,{l'ouble relation, which is a generalization of Frad-
?Lofj?{!\i\iu'-o fundamental relations {10) and (11).

O .

\3(3'3) D(xlr L y‘p }\) -

’ Yy, - - - 5 H¥p
if 11t R D Ty, - o g Taety Tadly - - - }xpx)
A YN (2 0y ) e e Upsts - o U

t Lo =
- Ty, . . ., Tpoy Tg TEiL oo+ -0 "”)\)dt
A
-{— .[ }\{'t’ yﬁ)D(yh N Y L Ygrnn - - - y Yo
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¥
(B9 =3, (~ " \K(z,, y,)
g=1

D(x]’ o Taey Tpgr, . L r " .\"';
Yu - o s Yaen Ve, .. v M .e’f
5 .
: y
a ¥, - .. y Yoy ya'ya-i—lr N L
. - z ELS
¢) Relation between, DP(N) and D(*> + - - » % AN
¥, - .. H yﬂ‘ y"’

The relation (27) between D'(A) and D(z, z; A) g(;nig:i":’-.‘ti'i:fr-s

as follows: (¢
A°

b b . R\
35 f .. [ (*""*" " T M
(35) - / D o . . ,zp)\ (354 .o dey,

AP D)

A
" — 1)mpr R
ANV e

L D
Y o

Proof —From the series expresgfon for D(A)

N n
DOY =143 (=124,
N m=1 "
we get {\
':\.}oo
D
D(&E’X\}: 2(__1)n

A"
=gy dw

_ o
whlchT after igb‘)change in notation n — P = n’ and a final
dropplng: ”(\ifg’bhe prime ('}, may be written

O DO =S ¢ np N
M =3 (-1 A

LS Atp.
n=i

‘Q
,

\v?ﬁt}\t by (15)

b b
A = : by . . ., tuy.
ni [ C [K(tl, . ; ”’)dtl o dig.

BN |
y bndp
If now
in place of b, . PN # S » torn
we write xy, o Zpyty o, L s bn
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and ioon change the order of integration, as we may, so that
we inte . coe first with respect to £y, . . ., tn, WE obtain
b

o LU

& g T}J: 1y -
K ’ dll .o (i dzl R d.."'.vm

VRN - S TR ,f,, I\
whir - weeount of (28}, beeomes e N

i ... X 1

Aven  F .. f B,.(x“ ’ *") dey . . ME,

B I it L1, - . - 1% N

ﬂ '}: >

Muli by both sides of this equality by (— 1)“ 7 \r_ and sum

with reeacct tonfromn = Glon = \’\e obtain
o r"ll'lj)\l}\} < n _._
(_'_ T e 'n=0f f 1)
B. (T"‘ “&' )da:, ... drp.
A ey ﬂp

It iz peormissible here £ f)ut the summation under the
multipie integral cn.gn..\ﬁf we then make use of the equation
of defirtion (30}, w@ “obtain

s d’Dl)\]
{— 1wr Lf}\{ f f

\\ D (“’" e ?\)dx; S da,
.%"; Ty « - - Ep
\xhlch ecatablishes the equality (33).
a\ (OWe make use of this result to prove that not all of the
NJFredholm minors vanish.  Let Xo be & root of D{}\) =
Then certainly ho # 0 for D(®) = L. Turthermore, X, is &
root of D(A) of finite multiplicity r (r 2 1), defined by

DO = 0, D) =0, . . ., D) =0, D00 # 0.
The multiplicity r of the root must be finite, otherwise

D(x) =
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In (35) put » =3, and p = 7, then the right moeny: - I»y
our hypothesis does not vanish, Therefore, (4 iaft
- member does not vanish, Hence, since a, = 0,
D(;I? Coe g il’ Ag) 7#_ {.} ]'n .’1}1, C
y o ., PR ’..\

and, tonsequently, .
p{*™ - %% ) # 0in x \\:\

o, . .. W )= Lo 1 Ly Y1, . -',\")
Henee, in the series N

DA} =0, D(“"’ AD)} D(Il’ T2 xo), D(x” 72 f‘%\xa), ,
¥ Y1, Yu ¥ NS
We must come to a numper <, cqll&t’the tnder of i,
such that -
D(ha} = 0, D(.’L’, s ko) = 0’ . .:””
D(Il, ey, ..".','q_l AB):_,-_ ‘: "”‘xl, e, xg
#1, .. y Yo ",[’J':v ¥, .. s Yo Au -_y'_é (.

p T ™S
That is, there ex15ts & particular sot of values r,/, .

<t
r ! PN -
Tos tn'y oL ¥,' for™he variables z; . y Ty WL
. -1 Yg such tHat we have the following numerica]
Inequality; O
& ?
A 2 W
M s 1 g
Oy, | ,yq,)\g = (.

Incidez;j;:éﬁ?jwa have proved the'
Tlgqum VIL—The index 7 of @ reot ), of D(N) is af most
equdl, fo the mulliplicity » of har g < o,
”}d) ?’fze ¢ Independeny Solutions
i\f?guatmn.ﬁLet Ao be a root of D(x)

DO\G) = {, D(xr ¥ A) = 0, .

of the Homogencous
= 0 of index ¢, so that

A |
D(x“ Y )\O)E 0
Yo, . .. v Mo

but D(xl: - . ,xq
Hy .. - ;tha é(}l
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Write o the seeond of Fredholm's gencralized funda-
mental 3o "*mua B3y forh =X, p =4
T ¥
B=4v, 0 . - Tl T x!a—h Lo = &) Xatl = Tarl
— !
&g T Xy
r — !
o=y e = Yot Ve =Yg Ypn = Ve

!
<o Mg T Yo, £

®

Then o
f e
xll-. S ‘T;’r_r—]] T, ‘T!a-‘,—l: R N, | = £ \\
I) ! 1 4 ! p e % \/
Yi. . o s la u Yes Y¥evl - - - Yq ,n}"
] ! pe r3
. g .1'-|’, PR :B’a_l, t, Eatly - - &, }Q N, it
X, Ao 0T, ; R Sy e )t
i ey - o s We-1 Ya, ¥ p+r1r o, \ Ya
o \\
since T fvpothesis p \,
iy : ™ e
] oy Ty Tty ';("?\ PRt )\o)E 0,
Vs Ueen Yern (V0 LE

~ \ \~ LI ] e !
Henece, i we divide by D(;l.zf, Y ?\a)

- Y
A\
and put o
N
B AR
-’}'.‘ g‘\\ 7;’,& 1) Uﬁ; y{:‘+l} s JJ‘E
ts T ‘--;xq’)\)
O Ao D ! o
<& @al, No) (1, T
LD

we have 0™
0" b
\§ ¢“{I! }\”) = P\ﬁf K(Z:, t)‘)oor(i} h'\J)fjltJ

<>{}h'“h expresses that the ¢ funetions
oi(T, No)y eafr, No), . - - 0o(F, No)

are solutions of the homogeneous eguation (26).
solutions are continuous and

These

rd [1: ﬁ =
(3‘) S"a(fﬂf’ Ao) = ;:[0, B #a

N
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from (30) and (28). Furthermore, these funetinng are
linearly independent. That is, if a relation of i, form
Ciei{z) + Copa(zy + . . + Copir) = 0

exists, where Cy, .. C, are constants, then v st

have Ci=Ce= . =0, =0 For, from 7, if\

T =z, then ¢, = . \
From the homogeneity of {26} it follows that O\

(38) uz) = Crgn(z) + , | + Cooglzy (Y

is again a solution of (26) for arbitrary values of Q.’;:“,. :

Ci. We thus have a g-folg infinitude of solutig‘nzs;. '
€) Completeness Prop ~—It remains tg show that EVOTY

solution of (26) can be put in the form (3N
If o(z) is any solution of (26), then N

vlz) = }\,[E?K@: ijht;df.

Whenee

b ,~.’{" B H
0 E.[ H(:c, £) {U(ﬂ) ‘-:?c:y K(t, S)v(-s)ds)dt,

where H(z, ?) is any continuoys function. Op subtracting

AN 5
AN (2, i)xtg’)mK(_x, ) — {H(x, ) — 2, Hiz, )K(s, t)d.s}’
N\ a

NO“:@ﬁly (33) Witf{ P=q¢+1, 2, = Z, Yer1 = ¥ and

O *'8 or two y's changes the
sign of D en
) g T, T
\ D( ; ¥ t g A KK(-T 2 D(zl, R xq )
] A
y} ?]; ‘y J) yl, . ’ yq
-_2 m(&"m y)D(xh R xrx-l: x, x‘ﬁ_;, e, X K)
a=] Y, . b L] yﬂ—l; Ya y§+1, C o, Ye

o xemlyn
@ s 8y oL y Yq
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Put x; = 1)/, L o=, =y, . .. Y=y
¥ =L & = A, divide by
! f
G
Ly o o ey ]
and put e
D(x, =, . ..,z ?\)
. v,y ..., N
(40 U,y = G2 w_J, A
D(.’L'l!, Doy xq! )\o) O\
¥i, -+« » HUe ;"\\ "
then we obtain A7
O

I"{ >
(41 D NK(x), Delx) = MKz, 1) — 1&g,
w1 )

B \ W
+ ?\‘,‘/-\ﬁ(x, ) K (s, thds.
Jay

The equuation (39) can now be writte’n,\

7 b ! w:
() = xoz ¢a(T) f{x(x Hr(f)di.

This shows that () can *bﬁ"“lltten In the form (38) by
taking for the conbfzmtw C “the values

’\ f Kz, He(®di.

Thus we obtaig’ k:redhoi’m s second fundomental theorem:
Theorem WZI —If X = X, s @ root of D(N) = 0 of order
g, then l}a@»lwmogeneaue Integral equation

\Y
(26) \' K ulx) = }\gf K(x, Du{t)dl

h{w«g linearly i{ndependend solufions in ferms of which every
"\oi?zcr solution s expressible linearly and homogencously.

Such a system of q independent solutions is given by

D Il", L, ,-T"Q_Ig X, Z"a_{_l, P ,‘tq }.)
'
(I) = :U‘L’, M :’y’ﬂ—h g Wa+rl - - - :Jq
Pall) = . 7!
D 1y H G', o
1 - 2 Y

(la=1,. . ., @
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22, Characteristic Constant. Fundamenta] Functions,
Definitions.-—If D) is the Fredholm’s determin:n! for the
kernel K(z, ) and D(x,) = 0, then X, is said to e 4 charae-
leristic constant of the kernel K(z, 1), Further, it «(e) is
continuous and not, ®entically zero on the interval vui) und

[
e(@) =\ | K(z, B, A

'Y

then e(2) s called 3 Fundamental Junction of the Q\'?‘-T}ncl

Kz, 1), belonging to the characterigtie eonstant A4 ™~
eile), .. eo(T) form g camplete syslcn{ka? fuda-

mental funetiong of the kernel Kz, 0), h(‘.lonﬁhg Loy, If

every other solution ig expressible lincarly @;tcrms of these
¢ solutions, Thus, if ,, . » Yo A ANY other ¢ soln-

tions, we must have )
o O,
A .
and if O Coorn
. Oy
% . - . # 0
Oy Yar oL Ceq

¢, . 0 Yelorm again o complete system of fundamenital -
funetions } elonging to A,.

. 23. %}Associated _Homogeneous Integral Equation. —
Teparatory to the discussion of the non-homogencous

Integrs] quation, for D) =0, wo will discuss the homo-
~&UPOUS integral equatiop
) 3

b
\(42) 1(x) = ), [ K@, z)o()dr,

.Which is called t

d the Integra] equation assecinied with the
integral equation

(26) ulz) =, bK (=, Dult)ar,
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Notice that the kernel
K{z, §) = K(, 2)

of the associated equation is derived from the original
kernel A{z, {) by interchanging thc arguments r and I
There cxist important relations between the solutions of the
two equations (42} and (26). To obtain them, we ﬁrqt\
computn the Fredholm determinant and Fredholm mms’ﬁta
for the kernel K{x, £), which we indicate by the correSpond-
ing dnshed notation. x\

a) Fredholm's Delerminani for the Aééocmmg&f{ernel—

b4

N\

o " _\
DY = 1+ 3, (<1
ne=l I\

3

where N O
Kt . . . K, )
b BN o
A, = f - N
a a.‘\ e e e e e e e e
.:\V K, t) . . . K{ls ts)
j\\ iy . . . dia.
Then N\
i"\:.{' o _ * uE'_
% D) =1+ El(—l) 7 An
w‘f‘ere
(Ktl, t1) - K(th tu)
A(t,,, Y ()

diy . . . dls
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In this expression for A, put Kz, ) = K(t, 1), the

Kty o Kyt
b h
HA_,.-——/‘.‘.-/-,..,.,‘
o | A
K, 6y .. Kt ot .
div
M

£\

The determinant which appears in the integrand ol 1s
the same as that which appears in the integrand ™ the
expression for 4,, with the exception that th s and
columns are interchanged. Byt this interchah’{;}%esn'e-r: the

value of the determinant unaltered. Therefore .1, - 4 ar
and hence AD

(43) D) = Dy

Hence also we conelude that K, .g:jwsind K{r, ) have the
same characterigtje eonstants, "

b) Eredhotm’s Minors for 3*’?6.‘;1:;'8003'afer1 KNernel— We have
from (30} \\,

D(xl’ T 2\) - i(_ LAY LI :fﬂ)
¥u, . .. r Yp ':\o';_—.g n! " Yo o o . » Ya
QO
where the B, aregiven by (28). Then

£ 4 b N
"/
-B_n(xh T p o\‘;..’:x” = ..
¥y . i»\is » ¥
~ W f a

L T yl) R Fc('3:1; y;,_)K(:IJI, z]) P k(.’.ﬁ, {n)

:..\‘;:"
w\;,.t ;____
/o K,y K y)Kix,, 1) . | Kz, t)
Kty gy . K, ydK, 1) K, t,)

K(f(u; ) . E(f;;, .ypj}_%(t;, .fl). _' _. : j{(;m’fﬂi
dty ... dta.
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But Kix, i = K(t, ), then

b b
E(Ii. L '}II‘):
Ny - -
ot i

VW2 o L Klye, 2) Ky ) . . . K{tmy)

| e e O

LK, @) o Ky 22K (0, 7). Kt ad) P

if‘x{',«’,h' f) oo Ky, K@, ) . - K(fw )

5 RO

% i \.._)‘Il fr,) . K(y?,, fn) KUJ, rﬂ) \ K(fﬂ, ﬂ)
\dtl .. dt

An interchange of rows and columng ﬁ‘)\fhe determinant of
the infegrand does not change the Yalm of the determinant.
Hence

Bn(xi,- . rxﬁ) f : f
Yo,ooo0 r ?}‘p
}‘_ Jl, . {\1 y;ﬂr !1: - ’tn)df\l L. . dtn.
I, r\’ R

Then, by means ohh(, equation (28) defining B, we see that
B x‘{i; \' . J‘Tﬂ) - B (yl; - Jy?)
”\‘ oo - U Ty - T
and, tltgi“éf‘()rg
(44;‘\5) Ly, . . o T R) = D(ylp e - Y R).
V1, - . . s Yp Ty, . - - 5 %

\\ Slnce Mo is a characteristic constant of K(xz, #) of index g,
“we have
D(xljl - "xp)\o)EO (p:]_, . .,Q"l)
Y, o . ., YUp
while

! !
D(xl,* s T )\f,);é 0.
ylp - = Iyq
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Hence, by (44)

yl,.,.,yp 11,...,.1';,
inz, . . 1 Loy Y1, L yaforp = 1, .. TR

Further, if we put

(45) L=y, g =) o
s N
we have N
, ) ) 4D
b(x., RN A \ )_ D(yl’, CL \,';573:‘)\ A
- ¢ ALY el - \G A
N T2 IR . }

r p f
= D(zlg N To M) = 1),
¥, .:\'\’ - My

Hence, by deﬁnition, the index c},df:.o)\,, 8% a charactepistie
constant of K(¢, z) ig 7. We stat®'this result in the
Theorem IX,—f T dtsa chagacierisiic constant of Kix, 1)

of index g, then heis a charalleristic constant of K{I, ry of the
same inder- 4

Q&
) \ 7=q

Appl_xf, now,, Theorem VIIT 40 equation (42) and we find
that it hag > linearly independent solutions. A funda-
mental s{y%tem of such solutiong is given by

A
¢) The Fundamegual Functions of the Associated Equation.

N
{\ f=r =7 =t !
‘::; b l!, v g, x, & atly 3 g 2 )
Q - = =) e 5 “
2y(r) = ——_’_’____'_’_?LLI’_Eﬂ_J Yar1, : Y
"‘\, __ jl’, _i- ? N T T
\' D 5, . ) -9” Ro
r o o 0, G
~ ! =t ~ ¢ =
b Y, s Yaen, Yoo o1y 3 y?’? X\
jl’ f’ = o
e L _q—I;__E y & otl, . oty
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If, now, we introduce the change of notation (45), we find

j)(ll;! LRI | '{r’a—lr xaf! mfa-!—l: rooe xq! ha)

- N ?}IIIJ ce sy yfcx—lr x , y’a+1! . ?lq!

) =V : INRNCEEIES [V

D(xll, Ly .’L',I R )
Yoy - o .y yq
p=1 ... ,0. N\
The most general solution of (42) is now P, \ \
?{T) - Clﬁ?’l(x) —E_ 02‘:_92(1:) + . + Cq@q(-'ﬂj

iy The Function H{z, y) for the Associated Ker:ael -—I‘rom
the definition of H{x, y) given carlier, we ha{t’é\

1_).(1!, fl’, P x‘;‘\ag{ ko)

— w i, . W

Hx, y) = {5 : \ ;\‘i .ﬁ—'
I)(_!.’: - ;"‘:" ! _G{! Rg)

Apply (44) und make the‘(.,ﬂ{aihge of notation (45). Then

b 3;{:“?;"1":; -t y‘f x)
‘.R,\Il e .’Lq
(16)  Hix, y) = ;&5 : " = Hiy, 7).
\\D(yl [ yﬁf Rg)
O CTH

If, now, we zake account of (46) and make the change of
nntahm\f’lo), then the relation (41) written for the kernel
K (:r.{\l K¢, z) becomes

W\

\m")v 2 MK, 1 Yea(x) = MK, 2} — H{E, )

\’2 =1 ,
-+ hof Hfis, z)K(t, s)ds.

¢) The Orthogonality Theorem.—
Theorem X.—If A, and \; are fwo distinct characiera stic
consiants of Kz, 1), ¢.(z) 15 @ fundamental function of
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K(z, &) for n,, and eilx) is @ fundamental funciion 0f Wiz, 1)
H a3
Jor ., that is

b
(48) o(x) =1, f K(z, oo (t)dt

b_ _ 1 ) = [“ ” 2\
49 o) =n [ R, Bei)dt = ?\1[ Kty ajel N« :

¢ \A)
then \ ‘\' /
(50) _[ eo{t)o(2) = 0. G\

N

Proof —From (48) and (49) we obtain "m:\\'
B v
& =2 [ e -

N7\
b \
7\97\1./- f;o(x)K(t, )] dt dx

We see that the twe integrals on the right are equal if in the
last integral we write‘.{ and z in place of and £, Then
since by hypot-hesig,{?m\;& A1, We must have {50, ‘

Deﬁnite'on.——Tk{B\"Eontinuous functiong g{x), hiz), for
which \

s\ 3
N/ fg(a:)h(x)a’x =0,
'\u' 3

are saiid\'fo be orthogonal to each other,

Hetiee the ahoye result may be stateq ge follows: p.(2)
gn&,pl( z) are orthogonal 1, each other,

) ”\\,24 The Non-—homogeneous Integral Equation When

PO = 0—With the aid of the results cstablished in the

last article we ean d

Iscuss completely the solution of the
non-homogeneous int

egral equation

(51) U = f(z) + }ofbK(x, Bult)dt

when DA =g and A, is of index_—q.
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The finite system of linear cquations
u; — )\hEK;,u,- = f =1 .. .,n)
i=1

of which the equation (51) may be considered as a limit,
has, it general, for A = 0, no finite solution. If, however, <
certaix: conditions on the f; are satisfied, the system ha's. an -
infinitude of solutions. In analogy we will find that {5‘[),
for D{x,) = 0, has, in general, no solutions. I, h@(’b‘ever,
Sz} satisfies certain conditions, then (51) has an‘infinitude

7

of solutions, AV

aj Necessary Conditions—To obtain hese conditions
flzx) we assume that u(z) is a continuous:{titetion of x satis-
fying (51). Multiply both sides of ('{lﬂ.\by ¢a(), Where

B N )
Polx) = Raf E{fde.(0dl,

and inlegrate with respect',tpf‘;i:’fmm a to b. We obtain

:} ".‘; B
{52) ff(-’l')q_r:u(x)dx =«f w(x) e (2)dz
A L !
\\" - )\ofbg_oa(x)‘]!fh}{(z, t)u(t)dt}dx.

In the last imtégral on the right, o.(z) is constant with
respect to $afd so can be placed under the sccond sign of
inti‘-gl'at'(tin\.w We may change the order of integration and
then’b{{ké u{!) from under the sign of integration with respect
to %N "Thus the last term becomes

":' % { H b _
~O f w(®) | ,\Ofb;;ﬂ(a;)x(x, Hdaldt = f u(t) palt)dl.
\ j & l i) i 3

Thus we see that the first and last terms on the right cancel
and

(53) f}(x);a(x)dx = 0. (a = 13 e :Q)

Hence, in order that there may exist a continuous solution
u(x) of (51), f(z) must satisfy the g conditions (53).
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b) Sufficiency Proof.—Let us now show convers v that,

if f(x) satisfies the g conditions (53), tll(.'I.l (:HI_]_d.rn-:: [I;LV(‘.' 4
solution. By our bypothesis the ¢ cquations (o0sh e sutis-
fied. Then
. b -
z?\uK(I, Yo'} f e, dt = o, O\
- ) A\
Now, \K(z, y.") is independent of ¢ and so may be phgdd

under the sign of integration. [t is permissible {4 “'ig:ﬁtgf?
the order of performing the summation and the inlegryion,
We thus obtain RS

b4 i w
f [-2‘, MK @, v Ve 0ft) at S0
a =1 :t\

o ' 4
&

which, on account of (47), becomes

X 3
N /

] El:,,:’
(514) 0 = f MKz, Hf(O)dr — f’d’f{x, Of (Ot
i .’b:':‘alr b i
0| f His, DK (@, 5)ds .

The last term Inay be{w}i}ten

‘6,
' J\ofty(‘ fOH (s, DK (x, 8)ds dt.
e NSe

Make now a:élé\aﬁge in notation,
s and 1, ;\\V’:}bbtain

\"4 b b
\\\ Xe f f JOHE, K (2, Hat ds,

NS

.{h},his definite douhle integral it is permissible to change the
order of integration, We then obtain

b
Ro-/a-K(:r-, 1) {fbH(!, s)f(s)dsjldt.

After making thege reductionsg i
and last terms and obhtain

In place of ¢ and s write

n (54), combine the first
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b [ ]
(53) 0 = A, f Kiz, t)-‘lf(i) + f 1, s)f(s)ds]dt
b
- f H(z, )f()dt

wlt) = 7 + f HU, $(s)ds, A
then : ) Oy

b N 4
f ‘H(I: z)f(t)dt = u.,(x) —_ f(a:), Y :s‘.\l

ol
7%
!

Now put

S

Making use of these last two equations, (55{1&@3{:01&1(35

b 3}
wfx) = flz) 4+ Ao f K{z, Dyt
o A\

. o:~\ .
Thus we have proved that if (530 are satisfied then (51)
has at least one solution, u.(z) piven by

(56) tolt) = f(x),je’{f He, DO

e} Determination qf*?i:“‘i Il Solutions.—Let us suppose
that (51) has anether continuous solution w(z). Then
wlz) — wo(z) is a{é@“ution of the homogeneous equation

e\ b
67X ) = f K(z, Oo()dt,

N\~
.fur, if wosubtract the members of (56) from the correspond-
mg\lgagfnbers of (51), we obtain

O\ b
@5) u(z) — w.fa) = A, f K(x, t){u(t) - uo(t)Jdt.
By Theorem VIIT the mast general solution of (57) is of

the form

Croi(a) + Cape(z) + . . -+ Cope(®),

where 1, C,, . . ., C, ave arbitrary constants.
Hence the most general solution of (58) is

wx) — u(x) = Cronfz) + Copelz) + . . .+ Copu(z).
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Therefore,
b
ulz) = f(z) +fH(x, DIt + Crpr(z) +. .+ o)

is the complete solution of (81). We have thusx proved o

Fredholm’s third Jundamental theorem: .
Theorem XY.—J7 ), 45 4 characleristic constant of NS

of index q then O

\
h !

(51) u) = f(x) + 1, f Kz, Dud o
a m\\’

has, in general, no continupus solution. \Faorder that a
continuous solution exist i 15 necessary t?)Q{;
$

W

B A\
ff(x)ﬁou(x)dx:(); “,*‘__T‘IJ LRI IN}

where the ¢a(Z) are g completa;éé}? of fundamental functions
for the associated homogeneoué’féquation

42 =4 T v
{42) v(x)’m‘\”ko f K, z)w(@ydr.

. If _these condz'ﬁq"n:é"’are satisfed, then there are a qfold
nfinttude of so}.’-uﬁz'ons of (61) given by

O e
u(z) = fa)t f H, 0f@0dt + Crpyz) + .
\\"\ + Cooela)

whee €y, | | » Ve @re arbilrary constants and where the

”\;':g'z.»g(x) are o complete sof of fundamental Sunctions for
4

b
(26) u(z) = 1, f K, Yult)dt  (Theorem VIII)
and H(z, t) 45 given by (40).

The fo]Eowing ta}ble exhibits the results of the solution of
Fnedhqlm 5 equation together with the analogy between
the finite system and the integra} cquation.
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3
uiz) = flz) + }\f Kz, Hut)dt

67

Case I B{A) =« 0

Casze IL: D(A)

= {), index g

MNone-

hozogencous

Unique sotution - Unique solution

In general, nn

Non- O
Homogeneous Homogeneous
homogencous |
| )
i . }

. tfﬁ.ltl()n&

Uled = fiz) ! u =0 solution R
+IE'2_(§_,;;)\) Solutions  exish. \\‘2 Cotva (2}
L B only if f satmv a=1
HOL fﬂ‘s \\;
f ()] =
LI ‘
: THY e ? solu-
i :gti(‘)‘ns
i &R i
?:.;u?\th,,m, =fai=1 . . ., n
m'\
¢ ]
Case l:\x\;é { ' Caze IT: A = 0, index ¢
——— ——% ‘, , | . —
2N | |
Nonw Homogeneous Non- | Homogeneous
hompgénrous homogencous
_{\
j\{imquo solution - [quue solution | In gencral, no] %7 solutions if
@ up =0 solution A i of rank r
\" 2}' A w? solutions if [ whereg =n — v
v = =L the f s:ltisfy;
- A certain ¢ rela-
tions of the
form
.Calfl +
+ Canfrl =0, i
e=1...,4 '
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25. Kernels of the Form 2ai(x)biy). We give & briof
discussion of the integral equation with o kernel of the

form
K, y) = amby(y) + . . 4 aulaib,iug.
Fredholm’s integral equation N\
[ ’t“\’
w(r) = fx) + )\f Kz, (e \\\
] ) « \/
can now be written in the form (‘”"‘.

3 "Z:..
(59 u(x) = f(z) + 7\[01(13)f AOTION %\:\"t}\_ ‘
+.ﬂ;’é'5/l’bnf_r} Hifieft [
x\“ w

v

& \ ¥
(60) f Bludr =k, N\ o

Ay s,
3

I, now, we put

we see that u(z) i of the ‘fﬂ'.i;fﬁv
(61} u(x) = flz) -}:Q{al[:x)Kl + .. 4 a”{:::_'}}\',,},
. )

SR i let us substitute
Yale of u given by (61). wo obtain the »

\. 5
(62) K;{%‘;\[ f LWbKdr +
‘Ff ﬂn(f)bi(c)ffndf} =f bOfOaG =1, . .
»\v (/3

£ 3 .
\”\ Introducmg the notatiop
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Equations (63) are a lincar algebraie system of #» non-hom-

ogencons equations in the n unknowns Ky, . . . , K,,
with the determinant
I - h(\.u - RC]Q P - )\Cln
J — gy T —ACa . . . — AC,,
By = ’
. . . . . . . . N . - - . . K \\.
‘ - RC, 1 - RCRZ e ]- - )Crm N \”'
From the theory of linear systems, we have at @nce “the
result;
a) If D\ £ 0, the system (62) is satzsﬁed\by one and
only one set of values of Ky, . . . , K. ondHese values are

given by Cramer's formulas.  Therefore Frédholm’s equation
(59) Aas one and only one solution, which’zs given by (61).

b) I D{X) = 0for A = X, (and phis'happens for n values
of X, real or complex), and one‘of“the ¢th minors of D(})
Is the first minor which doc,s} ‘ot vanish for A = A, (this
gth minor is a determinant of order 1 — q), then the general
solution of {he homogmeom system (62) (f(z) = 0) will be
of the form!?

Kf:aLmLa am']'---"f‘aqmqi ri=1,..‘,ﬂ),
where oy, ws, s\ ., @, are arbitrary constants.
If we puth ﬁ‘he values of K; so obtained in (61}, we obtain
iIN”
.?\Ql;: ?\{mul(:c) + ez + . . .+ aﬂuq(x)]
_ f“\‘fii‘:’re the funetions
\m\:ﬁ;(iv) = My a1(2) + Mmeage(r) + . . .+ Mena(T)
r=1...,9

are linearly independent. .

Thus wo see that, under the circumstances speclﬁ?d, the
homogencous integral equation for A = A, has ¢ linearly
Independent solutions.

! Bécuer, “ Introduction to Higher Algebra,” §18.
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The associated egquation

b
64) a(z) = fz) + k[bu(x)f a(ha(tydt 4- .

&
-+ b,.(;r:)f (aif aE:‘ff)rfﬁJ i

is obtained from (59) by interchanging the funciios r{,-(a:\).
and b:(x). The general term of the characteristic (L;f;f\:’l'?lli-
nant of (59) being « W

b (‘."‘:
G®b(Ddt = €y, O
[ #(E)bs(l) k ¢

L ¥

AN

the general term for the associated equation.iv:ill he

b N
fb;,(t)a.-(t)dt = 4l

:The characteristio determinante of these two equations are
Identi(.aal, since one can obtain.dne from the other by inter-
changing rows ang columns. S Therefore, the equation (59)
and the associateq equation (64) have exactly the saine
characteristic numbers and with the same index,

From the general theory we know tha if Ao is a root of
D) = 0 of inde @, "then, in order that the non-homogene-
0us equation 5:5:9)’ nmay have 5 solution, we must have

AL OL R TR
\O EXERCISKS
<\ 5
\FG; the equation. u(z) = fe) + 5 Kz, hu(tydt compute D(x)
g:gg bl_)(x, ¥ A) for the following kemnels for 1, specified limits a
Ans,
1.K(z,t)=1,a=0,b=1_ DOy =1 -
R-wa,i)=71,a=0,b=1. DO =1 £
3-K(z,tJ=mnz,a=0,b=x. D) =1 — 9
4. K(x,t)=zt,a=0,b=10_ D(y = 1 — LI,
= A
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71
6. Kix, /v — t,a =0, =10, D)y =1 — b0a,
6. Ki(r ! r,a =46 =10 D) =1 — 42x
3
T. Kir,fi =pizhya=a,b=50 D)y =1- ?\f git)dz.
(1]
b
B Kir, ' =gitl,a=a, b =h D(I\)ﬂl—:\fg(t)dt.
[13
8. Rir, f1 = 2¢7et,a =0, = 1. Dy =1~ (e — I)n, N\
10 K(i, 6y =2~ t,a=0,b=1. \
Solve the following inlegral equations: ':>§~
] :,,\’\ @
. « \J
11, wiri = sec?r + .\f wlthdi. A\
u
1 >
12, wisd = see rtan oz — A f w (L)t
[}
13

Cuilrl = cos o 4 ]\f site 2 (E) .
1]

14, s

A
ia ‘s“
16, wiz) = x? 4+ xf tult)den®
1] ‘s;
0N
A6, wiz) = sin x4 A '\JT w(t)dt.

17, w(r) = e ch 2eretu ()L,
y\sl

10 ':\
rpo= a4 ,\f af-n (it W
1]

(¢
Q\,\,

Bolve th{:,&fdlmmb homogeneous integral equalions:

1
s,
L@)\ f 1 (£t
L
sfs‘ u(x) zf (—1ult)dr.
~O ?
Q, 20, w(z) = % f sin z.u()dL.
4]
21 I
culr) = l,Oﬁ}./G‘ xf, w(t)dt.

1 19
2. ulz) = f tu(t)dt,
1]
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23.

M.

.

28

1
culz) =z + Af (z — Lhu(t)dt,

29,

t 10
= —. et
u(zx) 42[ T.u(t)
1 1
ufz) = a f 2erety (e

Solve the following equation by the method of §

s ulE) =gt 4 J\f (1 + z8ult)de. s
©
ulz) = x + )\f (1 + sin z sin thu(thedt, 4 Q
) 1 /‘g\%
u@) =z + J\f (0 + 3+ Huar. 4
0 B
O

>
o

ulr) =g 4 3 (a: ~ %u(l)dl. {\

30. Solve errusm H-17 inclusive by(ﬁg} method,
N

‘:\

N\

&

O
L0
\O
O



CHAPTER IV

APPLICATIONS OF THE FREDHOLM THEQORY A

i. I'kE1 VIBRATIONS OF AN ELASTIC STRING SO\

26. The Differential Equations of the Prdblem,.%}Ve'
consider an clastic string stretched between the tawel fixed
points A4 and B. We pull it out of its positionof equilib-
rium AQS inte some other plane initial positiﬁg\n, as ACB,
and then release it. The string will desqribé transversoe
vibrations. Suppose that at time t,tlm}"string cceupies
the position APB. Let z = AQ, N~

¥ = QI be the abscissa and ordi{’)" £
nate of any one of its pointseR. P
Then yis a function of = a-ndﬁ.j.};we P
suppose the cross-sectiontef the g4 : lc? 5
string Lo be constant and infinite- o

- [Fre. 5.

gimal compared wi‘gh}the length.
The string is of hdnfegeneous density.. The effect of gravity
is to be neglectetl, Further, we take for simplicity AB = 1.
It is then provéd in the theory of elasticity: that the motion
of the str:iifg“fs given by the partial differential equation

(1) \\ &f = 326—2:9: {¢c = constant)
’: af? art .
,..\Wﬁi':-h the initial conditions o o
@ o, =0, Y1, =0,
3) w0 =gla), yelz, 0) = 0,

whore 3 = g(z) is the equation of the initial position ACB.

Equations (2) are the analytic statement of the faet that the

end points A and B remain fixed, while equations (3) state
73
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that for 2 = 0 the string is in the initial position 1R and
each particle starts its motjon with an initin) zero velority,t
27. Reduction to a One-dimensional Boundary Problemn,.
Let us try to find 5 solution of (1) in the form
¥ = u{z)e(t).
Substitution of this value of y in (1) gives

\\~
d2p o oot LW
u(x)dT‘Z_ = cv.ft)a:c—u) ‘ O
which can be put in the form O

Te)  dum) (D

e A N4

o0 " Tu@ N
The right-hand side 1s independent of'\:t;v\and the lefi-hand
side is independent of . Then either member iz a con-
stant, which we designate as —-)\pé.wf This gives us the two
ordinary difforentia] cquations g solve:
2 o
gf: T hu = gp ;{zf T A% =0,

The initial conditions gy ang v are obtained from (2) and
(3), and for 4 are,a{‘fo‘llows:

MOl =0N i

M2 TR 1) L g sinee o) % 0

N\ W

We are thus Yed to the followin
problem: %o determine o funeti
the d.@eréntial equation

N\ d*u
IS dzithu=0

w\" W 4
\.A2nd the boundary conditiong

28. Solution of the Boundary Problem.—We see at once

that 4 = ¢ i5 4 solution, Phig Eives for the original prob-

' Wesns-Rusany “Lehrbue : . . .
chungen,” §a3. ’ Ush  der  Partielje D:ﬂ’crentxftlglel—
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lem of the vibrafing string the trivial solution y = 0,
which means that the string remains at rest. Hereafter,
when we refer to a solution of our boundary problem we
shall mean a solution not identically zero. To obtain the
solution we have three cases to consider.

Case J-—A > 0. From the elementary theory of differ-, A
ential ¢uations we know that the most general solution
of {4) s e\

— e N
u(z) = A cos v/ Az + B sin v\ x. AN
The coaditions u(0) = 0, u(1) = O giveus 4 = 0gud dither
(1) B =0, or (2) sin /A = 0. O

(1) If B = 0, we obtain the trivial solutior'u = 0.

(2) If vin v/N\ = 0, then A = n’r* (n,@n Integer) and the
solution, is \

u(z) = B sin naz
Case II—X\ = 0. The gegeiﬁl solution of (4) is now
w =Wz + B.
But »(0) = B =0, and u(l} = 4 = 0, so that we have
again the trivial h\ftibn u = Q0. )
Case I1I.—x < 0. The general golution of (4) is now
O = eV 4 BV
Applying{%hé’ initial conditions, we obtain
;@5’; A+ B =0, whence B = —A
,\'fﬁ'(l) = A(e‘/__" - e_‘/.'_") = (0, whence 4 = 0 (A # 0).
\./ ..
\ Thercfore, A = B = 0, and we have again the trivial solu-~
tion & = 0.

Thus we arrive at the .

Theorem 1.—If A = n’r%(n, an infeger), then the boundary
problem

@ P+ 2= 0, w(0) = 0, u(1) = 0
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has an infinitude of solutions:
¥ = B sin nwar,

If N # 02 then the only solution is the trivial vie 1 == {,

29. Construction of Green’s Function.-—We now Propose z
to show that every solution- of our boundary problom (4)
satisfies at the same time a linear integral cquaiiom, (We)
observe first that with the given boundary (-.mlr.il'l'ifatl.;_‘\thc
method of §4 cannot be used to determine an wrpriyulent
integral equation, In the present instance, J@hhrder to
determine an equivalont integral equation, wedist construct
the Green's funetion belonging to the bounddry profilemn.

The given boundary problem for M) has only the
trivial solution ¥ =10. This iy true,‘ﬁdx’vever, only under
the assumptions tacitly made throighout, namely, that «,
together with itg first and secondj.dé}'ivat-ims, is continuous
in the interval [01]. Y.t us ugethe notation u' to denote
this assumption, ! LN

Drop now the assumption we and allow the derivative
%' to be discontinum}:s‘\at an arbitrarily prescribed point £
between 0 and L, while ¥ itself romains continuous.  Aceord-
ingly, we propose\sb determine 5 function wu satisf ving the
following condif]ons: )

A) uw in TOI].
3 a2y
Py Lid :
B\\{v}c and az = 0in [0g].

&

&l et d2u .
N\ U and &2 = 0in[z1).

\"\;5 ) () = o, u(l) =0,
The solution then must be of the form

w = {auw + By in [0¢]
@z + 8 in [£1]),
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From () we find

u(0) = Bo = 05 u(l) = ay + 1 = 0.
Thus the selution reduces to '

ook fog

u =
Bi(1 — z) [£1]
The condition 4) must be satisfied, whence :\
apf = }31(1 - E), '\}‘\../
Therefore @y = p(1 — & and B, = pt. ,'.‘.'“\ )
W
\\\\

The sclution now takes the form

y [p0= 2 QD
pel - ) il

Geonieirically, this golution 1s ’mpresented by a broken
line as In the adjoining ﬁz,ure. 3

R < s

*
O Fic. 6.

Torzx ,"Ri?. the derivative has a diseontinuity measured by
g‘.\\”’{f —0) —w'(E+ 0) = p(l — &) + ok = »p.

\"\“c now impose the further condition that this discon-
\'tm:ut) shall he + 1. Then p = 1. The function u s0
obtained is called Green's function for the houndary problem
(4).  We usc the notation K (z, &) to represent this funetion.
We have thus the following:
Theorem IN.— There cxists one and only one function
K(z, £y which satisfies the conditions
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A) K7 in [01),
. d2K .
BY K¢ and T = 0 in [0g].
da:K .
Ny e .
K¢ and qpr = 0in [£1]
KO0 =0, K1) =0,
YL il o S

T=E40 O
This function s given by the formula 5”.}‘.
{5) _ (1—5)xf0r0§2:§$ ¢
Kz 8 = {E(l — ) for £ < & < Y
Let us use the notation Y,

Koz, &) = (1 - p)z (¢
Kz, 8) = g1 ~ 2
The propertieg 4) and Dyof K (z, ’g)I;m”a:y nOw he writton
Kok, §) = Kya%)
Ko 8 - B¢ 8 = 1.
We can now prove the fo Itiwing:
Theorem III.-—Gree?ﬁ@ff unction 4s symmelric in 2 and E:
WK, 6 = Kt ),
Proof—Tet o Er <2<
Then K(ég %2) = Ku(31, 23) =
while K, 4,) Kz, 2) = 2,1 — 2,
whence ,\\“K (&1, 20) = K(z,, 21).

du _ oy BK
de? — T pE =

Multiply the first by - and the second by % and add.
We obtain

léK” — Ku"” =K, or
&E(MK’ = Ku') = wypg.




Q
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This equsiity holds in cach of the two subintervals [0¢] and
[£1]. Intcgration over each of them gives

£-0 £-0
[u.K’ _ Ku’] = / uwKdx
0 0

1 1
[uK’ - Ku’] = f wldz,
L £+o0 £+0

Both % and K vanish at 0 and 1. u#, w', and K are coptfri\lr\
ous functions of x over the whole interval [01). Wheilce,
adding the Jast two equations, we obtain 'z

uo)] K0 - 0 - K+ o] = [ K(x\s)m)da
But K'(¢ - 0) — K'(§ +0) = 1, anq,eqw
1 AN,
u(E) = ?\ K(:c, .E)‘u(w)dx.

Now interchange z and & an{l remember that Kz, &) =
K(t, z). Then

u(l) Q fK(i, Bu(§)ds.

This is a homoge A llnear integral equation of the second
kind for the determination of u(zr). Every solution of the
original bowidary problem (4) satisfies this integral equa-
tion, Heqke] we have the following:

Theoram IV.—If u(x) has continuous first and second
dem wes, and soli sfies the boundury problem

{4) i + A = 0, u(0) =0, u(1) = 0,

ol

then u(x) 4s continuous and salisfies the homogeneous linear
inlegral equation

ulz) = )\flK(:B Blu(g)ds,

where K(z, £) is given by the Jormula (5).
Let us now prove the following converse



:..\’: >

80 LINEAR INTEGRAL EQUATIONS [§R0

Theorem V.—If u(z) is continuous and satisfies the equa-
tion

(6) u(z) =X [ K, Hulg)ds,

where K(z, &) is given by the formula (8), then 1 has cortinu-{N

ous first and second derivatives and satisfies the fér'h'{m.{(l?"j{.
problem \ >

i \
goi T M= 0,u(0) = 0,u(1) = 0. )\

P?‘_Gﬂf-—x aud £ range from ( to 1 and K"Z&T £y s dis-
continuous at = = £ Let us then write B in the form

L x]\
ufz}) = X -[ K=z, Huls)de + xf'%rn(:c, Eu(E)dt,
s’ “t

Now we may apply the generaj;riﬁé for the differentiation

of a definite integral with respeet to a parameter.! Then
du x v:{"" 1

i = "[ K/ (z, Hulgls + f Ko'(z, HulB)ds,

since ilﬁjo(x, ¥) = K\(z, x).

Moreover, sincg\?}’(x, £ and K¢'(z, £) are continuous in

their respective intervals, we sec {hat @f is continuous.

A secop\d\diﬁerentia.tion gives

\J T 1
J;.{% = k[ K"z, tyu(p)de + ?\[ K (x, Bu(t)de
+ MK (2, phulz) — MK (2, 2)u(z) = -~ aufx),
sinee by our hypothesis on K we have K, — K" = 0and
Kz, ) — Ey(z, z) = —-1.

: Moreover, since wu(z) is
continuous, we have g/ contin

ucus. We have further

1
u(0) =2 LK, Hulpas = o

P See Goursar-

Huprie, “Mathematical Analysis,” vol, 1, §87.
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since A, £} = 0, and

u(l) = ?\[ K(1, Dulf)dt = 0,
since K (1, £} =
We Luow the solution of the given boundary problem
{4). Thiv knowledge combined with Theorems IV and V
givey the following: RO N
Theorzm VL—Only when N = n*x’(n, an inieger) @ogs ’
the tnfegral equalion

7 .’
S

uw=\[Km9mmz.§¢

have a solution not identically zero: N

u{zr) = B sin :rurx:~\ -

If we compare these results w1th the results obtained in
the preceding chapter for the ge‘neral homogeneous integral
equation, we see that the q}mracterlbtlc constants for this
particilar problem are » =" = ), and that they are of
index ¢ = 1, The furgg@mental funetion belonging to A. is

'\'\i;a'ix) = sin nrz.

The kernel is a, S}mmetrm one, so that

O K@ oo =Ko,
and ther¢ibte the associated equation is identical with the
origing]\ine and hence has the same solutions, The asso-
Cl%&eg‘f fundamental functions are, thercfore,

\m\: olz) = sin nrz,

II. ConsTRAINED VIBRATIONS OF AN ELASTIC STRING

31. The Differential Equations of the Problem.—Let us
8uppose that an exterior force uH (z, t) acts on each particle
of mass x in the y direction. Then it is known from the
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mathematical theory! of vibrating strings that { by cijuations
of motion of the string are

a%y . 0%y .
7 — = pd -4
7 o = g T,
(8) y(0, ) = 0, ¥t = o, 2\
(9) y(z, 0) = glx), e, 0 = 1,

Let us suppose now that /7 (r, £ is hirmeonie, H]:af;vf\i\,\""\'
Iz, ) = Cix) cox (B4 v) (¢ = (}]{‘}.“"/
Let us find, if possible, a solution of the form £
Yix, O = w(x) cos (g1 4- 'y)“":}\
Substitute this value of yin (7) and Put (88 = 3% W find

d* Lo
(10) 39+m+mgﬁn
while from {8) we derive the lgs;ilnzﬂll‘y conditions
(11) u(0) = 0 %u(l) = 0.

32. Equivalence Bet\yeevxi;the Boundary Problem and a
Linear Integral Equation—Constryet, as before the Creen's
Fanction (2, &). Ty

d?}\ﬁ\\ i)
BT g

Multiply th?}ﬁf‘st of these by u, the second by — & and add.
We obtga,\i:ri\
\\, uK" — Ky = AK A+ rK,
which may be written
) i"\,«w d, ., .
\”\~ RE(UK = Ku') = )\l + ri.
Proceed as before with t
£to 1. We find

1
u(§) = 7\_/0‘ Kz, Hule)de + flK(:r, Er(x)dr.
0

' WERER, Loe. ol 83,

he integration fron, 0to £ and from
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Interchange = and & Then, on account of the symmetry
of K, we have

! 1
ule) = ?\[ Kz, Hulf)dk +[ Kz, §r(Eis.

If, now, we put

i
(12) [ Kz, E)r{t)ds = f(x)
we have <O
N
(13 'J = ffo + )\f K(E EJM( ('{E: ,x'}‘ N

which is & non-homogencous linear integral rqu{tqon of the
second kind. It iz satisfied by every golubion of the
bhoundary nroblem given by (10) and (11

If we will proceed exactly agin i e‘;c;\asc of the homao-
geneots cquation, we can now shQW_gonversely that if »
15 continuous and satisfies the eqimtitm {13}, where flz)
is given by (12), then u has contmuoufs first and second
derivatives and szatisfies the dr{-‘f{ rrential equation (10} and
the boundary conditions (31}

33. Remarks on Sohition of the Boundary Problem.—
Tquations (6) and (139\ have the same kernel, namely, the
Green's function \\\hach we have constructed. Knowing
that the (halactt‘m%tu eonstants for (6), and hence for (13,
are A, = »*p4Gc obtain from the general thoory the follow-
ing It‘xult:{‘fdr (13):

Cas f\—'—If M nr?, (13) has a unique solution.

CERMIT—TIf N = ntr?, there is, in general, no solution.
A\%f)hxhon cxists only when the condition

\ (]-4) f flx) sin nrzdes = ¢

is satisfied. This condition is what

[ 1w =0

becomes [or this special problem. If (14) Is satisficd, then
(13) has %! solations.
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The boundary problem
j_?;: 4+ Au + r(z} = 0, u({)) =0, u(l) —

was shown to be equivalent to the non-hemogencous integral
equation (13) if O

(15) 1@ = [ K, oripa &

Nows

7N

O

This enables us, from Cases I and 11 for the il'li;é!}’f}ll equa-
tion, to state that, when » = n’%z2 the boundary problem
has a unique solution, and when ) — nizhhere is. in gen-
eral, no solufion, but that when (14) is\a:}Lisﬁnri, there are
! solutions. I, now, in (14) we s‘tﬁ}stitut.e for fx) its
value as given by (15), this condit{oij} ecomes

1 M W W
[ [ K(z, E)r(&).’ﬁf’n nrxdidr = (.

Interchange the. order (rf::l"ntegration and remember that

sin naw s a soluti(){(uf the homogeneous equation for
R = kﬂ: &

. \\\' !
sibhnTr = MI K(z, £) sin nridg
& 1
or /N B nrE = )\n_[' K(z, &) sin nraxdy
Y
[51'11@]((% £ = K¢, o)}, then the double integral becomes
ﬁ. 1
~O )\1_ f (&) sin natde = o,

That is, in order that the b
& solution, it, ig
the equation

oundary problem (10) may have
necessary and sufficient that r(z} satisfies

1
[ () sin nrzdy — 0.
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II. Avsonrany TueoreMms oN HarMmonice FuNoTions

34. Harmonic Functions.—For the sclution later of the
two boundary problems of the potential theory known as
Dirichlel's problem and Neumann's problem we shall need
certain auxiliary theorems on harmonic functions, that is,
functions of eclass C7' satisfying Au = 0:

. O
2 ~ *
Aw _'E.)_._If_f_a_u_(}_ ‘\
36. Definitions about Curves—A curve ¢ \\

C: r=e), y=yb), <t ﬁ\h

N
Is said o be continuous if ¢ and ¥ are eqntlnuous on [, 4.
We wnite this

Cerm- xa v'J‘

The symbol -~ is read is, fquwalent o or implies and is
implied by. ‘The sy mbol -'is read and. Trurther, we say
that the curve € is of blass ¢’ if ¢ and ¥ have continuous
first. derivatives m&f\}‘hese first. derivatives ¢’ and ¢’ do not
vanish ':il'l'lll]tdllﬁ()l.l&ly on [t,, ). We write this

"“C"’Nw”sff" (¢, ") #= (0, 0). '

Buch '\l}r‘ve is sometimes called a smooth curve. A eurve
of cla8s ¢’ has a definite positive tangent at every point.
Thaseondition (¢, ¢} # (0, 0) excludes singular points.
Evmy arc has a definite finite length. Thus we are assured
that for smooth curves we can choose as parameter ¢ the
length s of are and write

C: z=ks), y=1y, 0£sZ!
Fr 492 =1

when 1 is the total length of are.
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In like manner, we define a curve of cliss 77
C'“‘”'-"*J'(p':”'i,l'«""”'(go’, 'I’!) L (U, U)

Curves of class ¢ have at every point a definite cur vature,?
which varies continuousty from peint to point, 2\
36. Green’s Theorem.—Let € be 1 curve with the follovwe
N

ing properties: ()
1) It is cloged, O
2) It has no multiple points. N
3) Itisof class ¢”. Hence we ean represepf b with the
Arc § as parameter; "‘\

W

E= )y =), 0SOX L

4) There exists a positive intege} m such that every
line parallel to the yorz aﬁ:{i;:;’meets the curve in at

most m points, ™

According to Jordan’s thg&d@érﬁz such a curve divides the
plane into an interior and aftexterior region. Let us denote
by 4

SO
I, the interior plis the boundary
by K, the exi;qri plus the boundary €.

Then Greeg'$theorem? may be stated as follows:

Greeq’,s{Theorem.hIf Plx, y) and Q(x, ¥) are of cluss
¢ on Ieihen

‘\ No/
BN [P , _ oQ _ ap
’ :'\E’;J (z[ (@, yidr + Qz, y)dy :I_. [f( o ay)
O ddy

where the line integral is taken in the positive sense around C.

18ee (o CRSAT-IEDRICK,

note,

* Hee Oscoon, “Funktiunenlhcorie,” 2nd ed., p. 171,

I g (1 . . :
Sea (_xOI.TR.‘JAT-IILDliICKJ *Muthematical Analysis,” vol. L
for a proof of Green’s theoren),

“Mathematieal Analysis,” vol. 1, §208,

$326,

H



§26)  APPIICATIONS OF THE FREDHOLM THECORY 87

au, du '
I we put P =0 " = g then Green’s theorem

beconies: 17 # 13 of cl‘ws ¢’ and w of class ¢/ on I, then

. te ()
(17) / :{r,r _tl iy — ..{_..”d ) ffp_\.urfxffj
an Ou d N\
daedy, * 8
f_[ 6161‘ dya )"Uh’f* )

FaY
e\ N
N
N

bz =ide ean be sunpli- -y
fied 3f we iniroducer the idea of the |
divectivie! derfvalive of a funetion
flz, |

Let 7, 1 be defined at every
point of & region R of the zy-plane. 2\ X
The diveeiional derivative is de- O\‘
fined? ax follows {see figure): P \4 Fra. 3
f]{ "1 {\I],_){ f(-{-
d}) f‘_.o \v.:“ S h
if sueh linnit exists, A\

U fix, u) s of class f.’.,;thén"
Sy oyl = iz oy, %‘D’z(x, (e — x) + fule, Py — 9
BN + ale — z) + B — ¥,
where o and 3 irﬁ)chh 0 with 2y — zand y, — o
Divide hf:-fh members of this last cquality by & and then
let. & cmlu\rg Jeh zoro. We obtain

(18}, \§ ofix, yt _ a‘f_ cos (px) + 2{! cos {py).

=N dp A
."\‘v . . . .
2 \¥; Let now # denote the direeiion of the innel
A% .\ normal to our curve C at a point (%, ) of

P IS X
(x,.yj/ C. Then, according to (18],
i di du
= 0 (ny = cos ().
Fic. 8, G s 0 T g,
! SHee Ozuvop, ' Infferential and Integral Caleulus,” 1ev. ed.,
p. 308, 1910,
¥ 8Bee Oscoon, Loe. it p. 292,
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But
os {(nx) = _ eos (ny) = AR
L0E 3 = ds) HiL J = y
then
du _ _Budy | ou n’,rl
an 3z ds gy s
Thus, in Green's theorem, we may put \ ‘\
Ju dx _ dudy o = MUY \J/
oy & " az ds ] = an ,,'\ R
(g ey "\\\o
We have then the following theorem : A

Theorem VII—J7 belongs to the rla{&m and @ fo the
class ¢’ on I, then

o
(19} fv— ds = ffv.ﬁudxdy,—w
()
N du op an
1Y f
N\ ff(ax axtay ar)dl v

\ I
. ..,\
We now apply this(theorem to two special cases:
Case J—p = }\ “=0 on I. Then we have the

theorem:
Theorem VI?IJ}—-—I f % 18 harmonic on I, then
(20} >
:“\,‘ —- =
‘\. D 6nds 0.
.\ )

{Z‘&se H—y < u, Ay = Q oy J. Then we have the
\"\ ‘Theorem IXo—1f u 45 harmonie on I, then

LG (o

s}
Corol.-fary I—Ifuis harmons,
boundary of Cythen w = g gy I

teon I and vanishes along the
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For, by these hypotheses,

1 e

i e
hence - = 0, 2 a0 and, therefore, # = constunt on I.
LA f
But u i= continuous and vanishes on the boundary C of I\
o
hence o = (. A\
tond 7 . . du ra\
Corellary IT—If u is harmonic on I and an = O ait the

7
| ‘~

boundary (" of I, then u = constant on I,
Notice t}mt in this case we cannot draw, Lﬁe‘{,onclusmn
u =

37. The Analogue of Theorem IX for Q{e Exterior Region.
Under the assumption that u is harmﬁmc on E, it follows
that » is harmonic in a region £y exterior to ' and interior
to a ecivele 8 around the origin Which includes €. TFrom
Theorein IX we would then, fmve '

o f J1G) ...~(ay) Jits = = o
\\"' i _ f u.‘-;f:ds,

.: » 3

where the mjrmals must be drawn toward the interior of the
regiop- {‘m We now let the radius r of the circle S approach
® and examine the limits of the three
tﬁl‘m% in (21). The first of the single e c
.(lntegrals remains unchanged. Inorder s
\ ) "to see what happens to the second,
make a transformation to polar coordi-
nates. Then u(z, ¥) becomes U{r, 0),
ds = rdf, and aﬂ = — '?3_:’ since the Fic. 9.
normal ig oppOSIte in direction to the radius r. Then the

second single integral becomes

&o
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- f J'Ua—('-;r!f).
0 ar

Let us now add the assumptinn that,

lim ;30U : ; S
rU2-= 0, uniformly with respect 1n 4.
t o ar I\
Then —f T Ua—a{{dﬂ approaches 0 as » approqnches cangdye
{ i Qe

.”_\.
accordingly, also the double integral on the Lefi-tinnd Niee
of (21) approaches a determinate  limit der oty by

ff[(gi)z + (G_er) ‘!J dedy.  Henee welin veREAN oo rem -
XL 7
¥

9y
Theorem X.—1If u 45 harmonic mm K q;{d};

: Ll : VAN
(22} ll_r’r; ri’ % =, uniformiy withJFespect to 9, thes
duy? diy 2 N ' i
23 _) (_ _) "I T S
03) ff[ 5 + 3 g’};ﬁy I r?recd
& T\ c

As before, we obtain the hvo.‘corollaries:

Corollary I—Ifu isbatmonic on K and (22) sl holds,
and, moreover, y = éff'ﬁ*, then w = 0 on f.

Corollary H.——:If‘u s harmonic on I and (22} still holds,

w

ate,
and, moreover, é\ﬁ' =0on C, then y = constant on K,
L

#
{

¢ 38. Generalization of the Preceding.—
In the sequel we shall need a modification
of the Preceding theorems for the case

/

. where 2 i harmonic on the interior but
\ not upon the boundary of (. Let us desig-
nate the interior without the boundary
Fie. 10. by I, Construet a closed curve
Ce E=Hs 0, y= g e

of the same chargcter as C interior to C and such that

lim ¢, < C, uniformly as to g

e
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Denote by I, the interior of €, plus the boundary C.,
Theerem IX apphes for this region and we have

f I LA du
/{ J}« (;j-..*;f) ]J'w’y = ‘/‘uaL ds.

Ce
N
Let us now impose the following three conditions (A)
Oy
11 dimy = wg, uniformly as to s. A\~
el X \,,i
i N , A%
2) b = . untformly as to s, A\ )
;P i 0
o A\

(I |
) |( ii —‘ are hounded on I,
’ \l
Then we chtuin the following thoorem\s
Theorem X1.—If u ¢s harmonicand’ and satisfies the three

conditions (4), then o) bt

o iF A du;
21 f/t an B}} ]r?xd;,r = —fu,- 9n ds.
¢

\
The {ollowing two %;9’1\'011111&05 follow as before.
Corollury I —\L} we add lo the hypotheses of the theorem
that w; = O aledy C, then w = 0 on I
CorollapFl.—If we add o the hypotheses of the theorem

Gty )
iha!\é\%ﬁ’i— 0 along C, then u = constant on I'.

Make hypotheses similar to (A) for the exterior and call
“\t‘hem (B). Then we get for the exterior minus the boundary
\'\ F which we designate by E” a corresponding theorem with
two corollaries,
Theorem XIL—If u 7s harmenic on E' and salisfies the
conditions (B), then

du Gu f ('}utds
ff[ Gy) ]dx v ] o



a2 . LINEAR INTEGRAL EQUATIONS [§39

Corollary I.—If we add o the hypotheses of the theorem
that w. = 0 along C, then u = 0 on k",
Corollary I1~—If we add to the hypotheses of the theorem

du, "
that in = 0 on €, then u = constant on "

N\

IV. LogArrraMic PomexTiaj, OF A DourLe L. n-;gi\t\,’

¢ M
39. Definition—We suppose that (7 A\

AN\
C: T=E6), y=a), s=0 . O
\::\\

c has the properties 1) . . o 1Y of $36, Let

(£, 9) be a point on C,',(Q;y) a {ixed point
not on €, 7 their distazt&c??

T=VEOD T 5 -
&n} v the inner nom}iﬂ to C at (&, 7)), w(s) a4 con-

- tinuous funetioh oy C. Then the definite
Fra. 11. . «*l
mntegral ~3%
(25) S log;
5 wix, 1= \P uis . d
! )s\\ A H( ) £ &

for physicgji@f’eﬁénns is called the logarithmic. polential of a
double lg:y@:o‘of density 4 () distributed over the eurve €

o
We ,{Q{;{nn as follows a more explieit form for aa log ;
) ¥

Zop @ 1 a1
{26) -~ log - = z , d 1
\”\)@ 3) 5, 108 Ieos {(vE) T log -+ cos (o) e log -
T — -
(27) = ;[-—;—E cos (»£) + _y_r_?? Cos (w:r)J

1
= ;[ €0s (r£) cos (v£) -+ cos (rn} cos (”’?)]

_ 005 (ry)
)



e
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But from (27), since cos (vE) = — n'(s), cos (m) = £'(s),
we have
2 [y - n(S)]E’(S) - [:r - E(s)]n’(S)
Y - = & L —_
av B r?
Thus {2, ) may be written in the form O
o
! AN
wix, y) = f u(s) 28 () s, ;"3.\\ .
) [a s W
or 7 ~.‘\'

v |

: [y“ a(S] "(s) — Lﬂ\- £(s) |n'(
(28) wix. ¥ :f“{s)_ ] — dg

a: - E(s\]‘é y — n(SJ]

which shows explicitly the depemlencu of the integrand
upon the parameters x and § j“ 3
40. Properties of w(x, g} at Points Not on C.—FPut

1
\w,. ) = log -

Then Wer ha.‘r? \'\\.l
N
NS 2(z — 5)2
& g T Tt T A
il ? L 2 —
x"\.{' g:’: = 4+ (1;4_'7_)
N

“Lh( snee by adding we find Aw = 0. That is, log ~ is har-

s.'

\/’ monic, Murther

2 fa A 1)
a_xﬁ(a_é log r) = ag(aa:ﬂ log

arfa 1\ _ afo* 1)
ay“(aé log F) B 6_5(63;2 log ).

and
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Whence, adding, we find

9 1 aJ i t
Af = r—~ I = r = AY th
(af ]0;., _r) af( I();\ f‘) b ' }

. a I, . o
Therefore Z log - ig harmonie, Runilidv, we can show ~
af T o \

0 1. . . . N N
that o log s harmonie, Henee it follow froons 1207, 6hat

A\
_6 I 1. h . - . \ \/
gy ‘08 1 18 harmonic, Ty I, N\
3 | K70
2 — log =} _ AN
(29) A(av log r) = 0. NG
Let us now tompute Aw(z, ). W hiwy”
ae 52 ; ‘.‘}“' i
P Wz, y) = (@[’#(T% ;'L,, logr . ofx
S
{30) = [am 28 i I
_ W 5 5 o o,

gince the rales for the diﬁ"(?rentiation of 2 definite integral

;'"lth Tespect to g Pat&meter upe applieable.  Likewise, wo
ave O

a? \\*' : 2
31 i _ AN 1
31) ajiaga: Y = f (s) gy.é(& log _)s
\ S
Add (301',‘@‘] (31) ang take account of (29), We find
:“\‘~
N A = d n
".‘\\ @ y) , #(SJA(G_:; log ?j)rf,s‘ = {,

o From the explicit CXpression (2

\Tzvalued and continuong with g
point (z, 4) not on ¢, Thus
theorem:

Theorem XUL— 73, Sunction

i
Wz, y) = _/G‘M(s)i_% logg ds

™

S we see thatwe(z, y) is single-
I of its derivatives at cvery
we have proved the following
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iy single-valued and continuous with all of s deripatives at
every porizd {x, y) not on €, and in the same domain w 13
harmonic:

Awlx, ) = 0.

41, Behavior of w(x, y) on C.—In the preeeding discus- « O\
sion (x, y) was supposed nof to lie on €. Let now (z, ya_ .
eoincide with a point (z,, ¥,) on €, corresponding to a value
§ = g, s0 Lhat ."

Te = g(su); Yo = 7?(89)° ,\t‘

Then the integrand becomes indeterminateN¥The inde-
terminate expression which we desire to@%ﬁestigate is

W

S
008 (rp} I:n(s ) - n(s):lg (S) — l:f(s ) - E(s)]ﬂ ('5)

. T [ELS) _ g(‘qﬁ [7}(80) - ﬂ(s)}

To evaluate, apply Ta&}ors remainder theorem to both
numerator and den fmhator stopping at the derivatives
of the seeond ()I"l’l(_"]\ A factor (s — so)? appears in both and
cancels. The 1\1{;}1{ of what remains as s—8, is
L
O e T

“]‘-Qf‘i‘ MR, is the radius of eurvature of € at (@, go).  w(2, %)
\ $thus defined and has a determinate finite value at cvery
oin (z,, y,) of

w{x,,, ?Ju) =

: (s,) — n{s) [&'(s) — (s,)~s(s)]n'(s>
‘/-p.(s)[n ___j_]_ -[_—-——-2 ds.

ECE zm] [n(sa) |
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The existence of wiz, ¥) on the boundary of ¢ tloes not,

however, imply that w(z, ¥) remaing continuous, as (x, ¥)

crosses the boundary ¢ 04 the con-

trary, w(z, ) undergoes 1 diseontinuity

as (x, ¥} crosses (. Lot us denote by

P an interior point of ¢ an by P, an '\

’8@5{,/ exterior point {(x, ¥) in the virinit;-.af\
/Pe(‘b‘} Pox,, yo). If P; ﬂppl‘t}:tf’h‘(*ﬂ‘ ]”:.,,:‘:f:-"h‘en
’ w(z, ¥} approaches o d[’fli!i(f':{:}"fmlte
Jimit a,(x,, o). If P, appiOnrhes P,
then w(z, ) approsches definite finite ligntne, (x,, p,).
Belween these quantities an w(z,, ¥.) deEhN] above the

Fra. 12,

following relations hold; ¢ \J
Wilee, 1) = w(z,, 3.) srbnle)
(32} W%, y,) = w(zx,, y.f)i:f; ESTERR:

For future use we give here alproof for the special case
#(8) = 1. Let us use the nagation
P=Eti s =2+ gy
and consider the integr}t:l I along €

' =f_§f_.
O {—=

By Cauch}@:,ﬁfsst integral theorem

\Y 9 Ty an interior point of !
£ w’H.. - i ; ' [& o
O,

0, zy an exterior point of ¢,

\'"\i;m;iagral, we obtain
o - f = 0di + (5 - 40y
‘ (x~$)2+(y—n)2

f U~ mds (v — £dy _ W..
MY A Dt =gz = Vet

'For & proof of these staternents gee Horn, “Einfuhrung in die
Theorie der Parije len Differen tial-Gleiehungen,” §52.
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Henee, by cqualion {28), w{z, %} is the coefficient of ¢ in
the integral {7, Thus we get

JQTJ', zy an interior point of C.

wie, yl = . .
Y | 0, a2y an exterior point of C.
But if wie, 3} = 2r constantly as x, y varies, then Z\
lin iz, ) = wilze, ya) = 2. &
IERNE AN
, « \J/
In like ymanuer o
)

lim wiz, y) = wXs, Yo} = 0m<\

Py A

N o

We have now, in order to complete the proof, to compute
w(x,, v, for a point (x,, y.) on C. %aw about P, an are
aof a cirele catting € in @ and RS This are

will subtend an angle o at P, '“DESI{-,""ﬂﬁtE
by €7 the path € minus the fu‘eQP E. Then
He, + 1, = 0, since P, 1sm exterior point
for this pttlh But in ‘the elements of the
thcmy of functions Qf\ft complex variable it
is shown that , , O

\ de .
17y ¢~z e, Fic. 13.
NS/ a
whence /0
\‘ II(}' = '3‘(3..
rm}amo
'\‘“ W = &

o»\i 7 _
N Let the radius of the are « be p.  Then, as p—0,

We—oWo = w(Zo ¥o).

Now the integral W is convergent as shown above and
. Therefore

W(Zo, Yu) = T
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The equations (32) are satisfied for these values of 1 (2o, o),
Wilde, o), and w,(z,, 1,) for the spectal eane i =1,

42. Behavior of 3—: on the Boundary C and at Infinity,—

At the point Po(z,, 4,) draw the interior novial o, wnd takoss,

on it a point Lz, . tron "Theorem
durle, Yy

Ryl XIIT we know that at 1, © ) B

o) definite ang finite, Tt t.lg-{’ﬁpint P

approach P, along »; and [u\ff{:..

du _ gy

lim Ao if thinYmit eXIsts,
Piop, A0 dn; \

He

W\

du duw, "f?; it oxists
g Ii vo = Kifthe lmit oxis &y
Frg. 14, P'_I;I})n (9!’?; 3-‘3-}":\

N\

P, designating & point on t-he’plfolbngaﬁon of 7, beyond
P.. Then the following theoremi'is trye. !

SN LGNy b,
Theorem Xrv.— 77 one 8f\the tico limite O,

v exists,
i ang

then alse the ather ewa’s@nd

@ O
If we denot:-a 'by’;ac the exterior hormal to (7 at 2, then

~0 8 _ s

'\Q*' In, an,

TG the definition of the

directional derivative. Tence
~\(38) may also he written
) 3

(34) ' o 6‘1_.'._!.?‘

coordinates 7, g they wiz, y)
he following theorem is true:!
1 For broof, gee Hon.\', Loc. eit., §54.

hccomes"W(r, 6). Then 1
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Theorem XV.—
lim Wi(r, 8) = 0, uniformly as lo 6.

mn P j = 0, uniformly as to 8.

- un

43. Case Where w; or w. Vanish Along C.—We can now)
prove ihe following theorem: \\ K4

Theore;..a IVL-—If wile, y) = 0 along C, then ™

"

p(s) = 0. '\ (44

Proof. —Theorem X111 assures us Lhat wg, %) is harmonic
on I, By hyputhesis w(z, ¥) = 0 along®BY Taking it for
granted that the conditions (4) aresglways satisfied by w,
it follows frora Corollary I to T hoorem XI that

wix, y) = O on I,

ﬁiu . . .
Hence it follows at once ’Kw,f — = 0for every intcrior point

of (. Therefore, %{}'emst-s along € and vanishes there.

we

Hence, also va'Th( orem ALV exists along C and

H
"\/ a 173

. “ oW .
vanishes j\?!g}re_ Ry Theorem XV, lim ri— =0, unt-

r—

formls\%’ to 8. Hence, if we take it for granted that the
conllitions (B) on w are satisfied, then it follows from
C‘Qrollan 1T to Theorem XII that w is constant on &£
ﬁe see from Theorem XV that this constant must be zero:

w(r, y) = 0on B,

Whence it follows that w.(z, y) = Oon C. If wenow apply
(32) we find

wi(xar yo) - wt(xo.‘ Uo} = 2#;{.{89) =0,

N



100 LINEAR INTEGRAIL EQUATIoNS [§44

uniformly as to 8,.  Therefore

u(ss) =0, uniformly ax to .,

A similar theorem hols with respect to the i o .
Theorem XVIL—If w,(x, ¥) =0 alony ) thi A\
1(8) = constant. A o
¢ \))
Proof—Theorem XIIT assures us that s 1o ngoadie“on
E’. By hypothesis wlz, 4) =0 along (. Fuidsermore,
. g ) Y, \ R4
rhm rW—a? = 0, uniformly as o 8, afl(:()l‘(lH([{{{f“ heorem

Xv, Taking it for granted that the r-.(;ﬁ:{iffm,-s (B} of
338 are always satisfieq by w, it follpws from ¢orollary 1
to Theorem XTI that w(z, ¥) = 0 0dJ”. Hence it follows

Bw \ N
3t once tha an. = 0 for every poilt exterior to (" There-

dw, | &N
fore o exists along ¢ anfSvanishes there. Ilenee also,

r 6'10.' "; .
by Theorem X1V, am, CXISts along @ and vanishes thero.

Ts%(ing it for grazfied that the conditiong (4) are always
:J?“:ﬁed by w, itFollows from Corollary IT to Theorom X1
& £ )

A wiz, y) = constant on 7',
Py
Wher;?e;lf_; follows tha wi(T, y) = constant on C. If we
DOMADPly (32), we'fing
N e, y,) — wo(z,,

A Yol = 2wpu(s,) = constant,
<‘; “uniformly ag 4o So

Therefore,

r(s,) = constant, uniformly as to s,

44. Dirichleps Problem.——“;’e formulate Dirichlet’s
problem gg follows:
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Given.-—1) A closed curve €

C: ==ts),y=ns0<s<T € £
(35) £y = &), 9(0) = n(D)
with the properties 1) . . . 4) of §36. (0, %0)

2)/ A h/m:_-.t-ion F(s), vontinuous on C Fra. 1. £\
for § < ¢ % 1 and A
(36) F(0) = F(D) R

Required.—A funetion w(x, ¥) such that \,u}" )
) u is harmonie on I’, and ‘ m'\"\i"

3) (2o, Yo} = F(s,), uniformly ag{a S0,

where w;{r., y.) Is the limit approachgd‘})'y u(x, y) as the
point (x, i) approaches from the interjer a point (o, y) of
parameter s, on the boundary C. \g

4b. Eeduciion to an Integral’.Equatwﬂ First Method.—
The function w(x, ¥): AN

S 2

“‘J
w(z, y¥), ~—f ,u:(s)2 Iog% ds
\

is harmonic on \%}f‘]ﬂ thus satisfies the condition {a} for
every choice ofps) for which u(s) is continuous on {0] and
N ) = u().

The Kbﬁon w(z, y) will then furnish a solution of Dirich-
let’s@rbblem if u(s) can be so determined that the condition

(ﬁ) s batlbﬁed
{3;) wilz,, ¥o) = F(s,), uniformly as to So.

From the first of equations (32) we have
WilZo, Yo) = W(Eo, Yo} + H(S0):
The substitution of this value of w; in (37) gives

(88) ‘R’(xa, yo) + 7”.‘(30) = F(Sﬂ)'
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If in this equality we substituie for w(x, . s explicit
expression as given in §41, we obtain

! [ (8} — n(S)]E’(-s') - [E(-\-u) - i f)
(39) _u(.g) — 4 , T e e _:" . )
0 Elsa) — S(SJJ + [nf_so) — 3ls) f N\

. 7N &
bt~ rgh)

Divide through by . Then (39) beeomes :m'j‘r'q,f.‘f-‘;fral
equation for the determination of u(s,) with Tl lernel

R )
l[n(so) - n(s)]é’(s) - [E(&J = Elad ')
{40) Kis,, §) = " - Y B

7r T TR
[E(S") - E(SJJ ‘ﬁ{%}-&,) ~ () f

N\ WY

Fls, O
Put Fls.) =J{s.). Then the integral equation tales the

i
standard form ~.j:':°
S
(41) 1.} =f(s,,\){—- fK(s,,, shuls)ds,
. 1]
)

This is a special c’h@e‘bf the integral equation with a para-
meter A, for whip’q.)\ = —1,

Thus, in order that ¢ — Wz, ¥) may be a solution of
Dirichlet’sx toblem, it ig necessary that the density u(s)
satisly the “integral equation (41).  This condition is also
sujﬁcie&‘ " For, Suppose u(s) to he g continuous solution of

N
NWOK(0,5) = K(, s) on account of (35), and
N ’

I =10 on account of (36), and hene
#00) = u() from {41).

The fEmCtiDH w(z, ) formed with this funetion x(s) will
then satisfy (35_5) and, therefore, aigo (37) and, consequently,
%= w(z, ) will be g solution of Dirichlet’s problem.
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Second Method. From equations (32) we find

(42)  wniz., ve) — wol@s, ¥o) = 2muls,), and
e, Ma) + welzs, Yo = 2w(z,, JO)J

which by §41 - f (s )cnq__(r ) g
0

We now seek as a solution of Dirichlet’s problem a . {\
funetion w which is harmonic cverywhere except on P,\
and which upon (" zatisfies the condition ™

»

(43 wp + hu, = F{s,) + hG(s.), \,u}’:

where % is an arbitrary parameter. Tor A —Q,\ Ave have
the interior problem, and for A = % the extécior problem.
The function wiz, y) is harmonic everywhere except on
€. This funetion will then be a Q%f\)n of Dirichlet’s
problem, provided u(s) can be so¥(etermined that u =
wiz, 1) satizfies (43). Solve nuw»ﬁh{ equations (42) for
= w; and ¥, = w,. and sub%tltute in (43). We find

i
(44) wis) = Fs "B f w2 gs

) Fis) R

whore Jis) i T =R =i

This is an m‘fegl.ml equation of the second kind with a

paramet f'l,\?\“ The kernel is = (rar) Kis,, 8) [see (40)].

Ty
For\}&: 0, we have the interior problem, but for & = 0 we
hawe™s = — 1 and (44) reduces to (41). Forh = @, we

h\«n«{, the exterior problem, but for k = ® We haveh = +1
\ ) and {44) reduces to

!
(45) alse) = (_?(s_g L f K (s, u(s)ds.
We remark that, if F(s,) = 0 on C and & =0,

hecomes 4 homogencoub linear integral equa
A= —1

then (44)
tion with
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46. Solution of the Integral Equation. T}, kerne]
K(s,, s) is real, continuoys, and # Uin the region i

a: 0S8 €5 0Ky

and thus the Preceding theory of integral eountions i
applicable. From Fredholm's first, fundiinen o theoreny N
we know that if D(— 1) % 0 then (41) has one omly ofte, ¢
continuous solution, \ N

We show first that DO 1) = 0. For {his PUoRe we
use Fredholm’s second fundamenty] theoren, E‘n;cﬁ?i"‘which

it follows that the corresponding homogonoq&s' intogral
equation 8

!
(46) 260 + [ Ko, St
i £ &
&
has no other solution than the triviah¥ne 4 = 0, 4f 1 ~1)
# 0; while if A = - 1s a root, ok D) = 0 of tiddex ¢, then
(46) has 9 solutions, Hence,37(46) has no other solution
than 4 = 0, thep D(-1) =g
Multiply the members, of {46) by =. Then

(]
SR + m(se) = 0,
i \\

uniformly a5 to )?:a;,’ This last cquation, by (32), alter taking

account of ORDotations in §41 and equations (40}, can be
writton p

‘\iif:;’w,;(xa, Yo} = 0, uniformly as to s,.
Buj;?iﬁy Theorem XVI, if Wi(L,, 4,) = 0 along (', then
O Kis) = 0.

'”\‘ N
3

\Thereft)re, (46) has ne other continuons solution than
k=10 and, tonsequently,

D(-1) =g

Thus we see that X = _q is not g characteristic constant
for the kerpel K(s,, s). Hence (41) has one and only one
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eontinuous solution u(s,) representable by Fredholm's

formula
I .
e T Dis,, 87 —1) ,
e —_J'f\._”} - [ D('—l) f{?)dé

Therefure, e, o) with g = up(s,) is @ solution of Dirichlet's
problem. W state this result in the following theorem:

Theorsm XVIIL—(rizen \:\
1) A elosed enrve ' O
C: o=, y=al9, 0£s<T AN
50y = 5D, (0) =2l N
\/
with the wroperties 1) .. . 4) of §36. \\,

LN

2y 4 function F(s), continuous on (‘{m‘ 0S5 S
AN\
F(0) = F{IAD

Then fhere eaisty a funelion 3£§£§ ;f) such that

o) w18 harmonic on I, dg’.ﬂ“

B) wilze, o) = Fls, ) Quiformly as o 8o, whore (o, o) &
the limil u;r.);.-‘)rfmck{‘.d'@,\u(x, y) as the point (z, y) approaches
from the inierior rrf‘}{\o.in.'t (x,, Yo} of parameler s, on the bound-
ary C. This fuiclion is given by '

¢/

\ 4
¢ w4 . 3 1
\:.‘\2\ U = f P(é}bv log > ds,
O o

o/

o\N o
%‘gkﬁjti (s} is the wnique solution of (41) and s given by

N . UD(ser 85— Der v g0
w50} = Jis,) +£ '—D—E:l‘)‘_f(s)d‘*r

where wf(s,) = F(s,).
47, Index of A = 1 for K(s, 8).—We have seen that
A= — 1is not a characteristic eonstant of K(s, ). We

shall now prove the following theorem:
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Theorem: XIX.—\ = +1 75 q characteryatie constant of
K(s,, ) of index 1.

Proof.——According to Fredholm’s secomd findamental
theorem, the statement to b proved s oequivalen 1o the

statement that the homogencous eqiifion ~

f N ¢
(47) wl(s,) = fﬁ’(.&‘,,, S (els A
3] ¢ \ "
hag 201 solutions, Now, if we make yse of (-rm:‘-_t.mﬁg 4m
and (39) and the explicit expression for wie.. aMrtven in
$41, we see that (47) is cquivalent to s

{48) W%, Yo) = wp(s,). PN

But from the Proof given for the qq’[I}tions (32) for the
Special cage r{s) = I, we see that MY = 1 s n solution of
(48), for when B(S) =1, we have s
W(T,, 11,) =:r = muls,).

Thisis a solution of (47)&phich 1s continuous and not jdenti-
cally zero, Hence M2t IS a characterss
K, o), \

We will now détermine the indox of A = 4 1 for K (s, s).

solutions of {(47) or of its

¢ 2 OW, on account of the second of equa-
tiong (3%"3;ur fquation (48) above reduces to
O

tie constant of

u(s,) = congtant,

Therefore, {(47) hag « Isolutions, which shows that the index
of the characteristj, constant A = 4 of K(s,, s) is 1,
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VI, Looariraic POTENTIAL OF A SIMPLE LAYER

48. Definition.—We have given a closed curve

C: wo= B, y=as), s=0,...,1

having the properties 1) . . . 4) of §36. Let r represent ~
the distance bhetween a point (£ n) on C \
and a posid (&, ¥) not on €, k{s) a con- G Oy

tinuous Mnction on €. Then the definite
integral

e o 1 @5&\

plx Yo=  § ki v,
(z, y) § His)log ds Yec. 16,

o }Ifffc(s) ]t>g<[[:t: - E(S)J&%\\fy - (8)]2]“

is called the logarithmic potential ofﬁe simple layer of density
k(s) distributed over the curve N0

49. Properties of v(x, YJ“_
Q

The log ’.[ [:r: — £ (S&,\‘f‘
L a\

function of = 311(1?1 at all points not on € and hence the defi-
nitc integral @i a function of the parameters & and ¥ defines
a fune tlomm y) which is continucus with all of its deriva-
tiv em\}.‘f and . Further, v(z, y) is harmonic in the same
I’Cgll{\ For, from the theory of definite integrals

, \, 1
~O Ay = f?»(s) log ~ds
1]

1
- f};(S)A log - ds.
0 ¥

But it has been previously shown that

[y - n(s)]z} is & regular analytic

1
&log;—o-
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Therefore
Avlz, ) = 0.

Hence we have proved the following theorem:
Theorem X¥X.—The logarithmic potential vlx, y:

! 1
(49) vz, ¥ = fk(s) log - ds . o
o r 2 AN
of o simple layer s continuons with ts derfrafives ~U\ all
orders, and is harmonie, on I' qnd E' : N
A?!(:C? y) = . m'\"‘"

Let us now investigatc the behavior of z.x{fz:, i) on the
boundary € at any peint (T, ¥o) with palatneter s,

Zo = 85, 9o =)

From the explicit expression for r.g(:xg"y):

"

1 i (N \
U(To, Yo) = — g[ k{s) :'

3 d Ta P
X log L{E(So) - E(B)J + [n(&:) - n(}'\')J |!'ff3

N ]
we see that wheﬁ\}’; 8., the logarithm which appears in
the int-egrand..bé:g;omes infinite. Thus we see that we have
to do withsatimproper definite integral.  Apply Taylor's
rcmamdq}'\théorem to the expression of which the logarithm
is talgﬁ;“We obtain
\ (s — 5,024,

”\;?vjhere 4 does not become zero a8 s approaches s,. Then

Jthe integrand becomes infinite like log (s — s,) as s — s..

From the theory of improper definite integrals we know

that then this definjte integral remains definite and finite.

We state without proof! the two following theorems, in

which Pi(z, y) denotes an interior, P.(z, 4) an exterior point

in the vicinity of P,

! For a proof, seo Horw, §53.
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Theorers: £XL The timit of v(z, y) as i — P, exisls:

lim olx, ) = (%o Yo

1 by
The timit o vl w) ws Po— Py extsts:
lim olx, ) = o.(x, ¥); N
Pe-vdty .”\'
and i, ?jr,) = 'l-‘-(SUu, yo) = U(xo: yo)' (\\

‘ 4

That i<, ~(r, i) rcmains continuous as the point Bz, 1)
crosses the Howndary €, In this respect the hehdyior of the
function wir, 1) is simpler than that of N0
w(z, ) fov wsdonble layer. (&

Constrict for the point Po(%e ¥o) Lh‘f\
interior normal n, to C and take ont .lt
interior point 22, and on its exterlor Dm'
longation the exterior point Pg,% then it

v
follows from Theorem ‘Q{; “I;hat —*eX-

Igﬂrﬂyo)
ists at I, and at P \1' or the a.pproach B

of P; and P, tow &I’,, along the normal Fia. 17.
the following thsﬁrem holds:

Theoren, XXII —The limit of a—-- as P;— P, exists:

\
$J v cos (ron}
xh\h}l j‘: = f’h - ﬂra(awfk(s) ds.

s‘”

e )
Q The limil of a as P.—+ P, exists:

cos ('ro’n

, o)
lim 0¥ '3"1 = rk(s,) + f k(s) =——ds,
L33

PusF, Iy

where 1, is the distance from PoTo, Yo 10 ¢ varighle poirt

[E(S), n(s)] of C.
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[§50
By referring to the figure, we obtain for Cos {r.n)) the
expression
¢os (r,n;) = cos {(rax) cos (n.x) + vos (roy} com tay)
8) —«, )T W
= 4G )___.__7}’(80) + n(s) =y Ev,), A
?.O rO
and hence e N
. . a\
.
- . 4 - e i’l’,\'_, :;:'-.Q,,:
cnteay [0 =)~ [co sty
Fa

[5(‘3) - E(SOJJz + [ﬂ(b‘) -— Qf..\sk‘f_

AN
VII. FreDHOLMS SoLuTioN op Nevmair's Provuras

50. Neumann’s Problem.
boundary problem of the p
problem, as follows R

Given — R

R

‘.‘X
—We formilate the second
0tent-igl~hhe0ry, or Neumann's
. DN

.

o\

~

7= =09, o<, g,
240, 5(0) — 0

' - 4} of §36.

1) A closed eurve ¢,
C:

with the propertféé?l) .
2) A function#(s), continy
A\

ous on € for g < s X1
&%"' F(0) = py.
R?Qf od A funetion %(z, ) such that

\bﬁu =0 on P,

Gy ;
8) . = Fis,}, uniformly a5 4 Sor

51. Reduction o an Integral Equation. First Method —
"he function vz i

ondition (a) for 5
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. If it is possible to determine the function k(s} so as to
satialy the condition (8):

av;

(503 T F(s.), uniformly as to s,,

then we will have a solution of our problem. O
[Bguation (50), written explicitly, according to A
Thecremn XXII becomes \'\\

~ [n(SJ - n(sa)}&“ {s)) — [E(S) - E(&J}ﬁ'(%)
(At} E{s) ds
Wl i)
{E(SJ - & So)] [n(S) "*'n(su)]

D = Fls) + wh(s).

This is an integral equation for ‘t.he determination of k(s).
Divide through by = and put ) -~

l[nw afa}(sf,)]sf(vso) - [z(s) — £(5.) [n'(s0)

(021&\9, $) —ﬂ_ 12

[ E(s)y — E(s )] [n(S) — 7{s,)

\\ ;

: & N C
and :H'.;"'\ f(‘g,a) = i .
N4
Then 5{}obec0mrzs
O~ »
5‘@\ k(s,) = f(so) + fK(s(,, stk(s)ds.
»\’ A\

\ " Introduce a parameter A and write
(54) (s = f{s) + A K(sg, s)k(s)ds,
]
which becomes identical with (53) for A = + 1.

From (51) we sce that k(0) = k(l), since, from our
hypothesis, F(0) = F(¢) and K(0, 5) = Kaq, s).
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Second Method —From Theorem XXIT we have
! P
ALY f k(s)-‘3‘fi-£’f*""f3fm
] °

N an,
(85) 3 t cos {r.n.)
_Vf = +7l'k(so)+ fk(s) i ‘__0 23 d-‘_\‘.
aﬂg i} Yo

We now seek, as a solution of Neumann’s probiein, 5 fl};\lt'v
tion u which is harmonic everywhere exeept on (0 g hich
on C satisfies the condition b

X
ool

7Ny

S %

(56) M 4 G = AF () + G(s.), @
where k iz an arbitrary parameter. For A %, wo have
the so-called interior case, while forjz;é“o we have the
cexterior case. This condition is mefe “general than {50)
and for h = o reduces to (50). NV
The function viz, ¥) is harmgnie everywhere except on
C. This function will thenbe*a solution of Neumann's
problem pravided k(s) cam be so determined that « =
v(Z, y) satisfies (86). Substitute now from {53} in (56) for
vl ave o,
6{\ 075 on: = dn;
We find AN\

: .
BT Y = fs) 4 n f k()28 lrend
(N o Ta

Qv Gls,) + hF(s,) k41

wi e w4 dg) = —— 1 W \TaJ R
RN S 1=k ATy

A s an integral equation of the sccond kind with a

\‘:ﬁérameter A The kernel is 9%-—(;°E‘-) = K(s,, 5). Tor

T¥a

h =0, we have the exterior problem, but for & = 0 we have

A= -1 TFor h = ®, we have the interior problem,

but for b = oo we have A = 4 1 ana {(57) reduces to (53).

b2. Solution of the Integral Equation.—To the equation

(54) the Fredholm theory which we have developed can be
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applisd. We look, then, for a solution of (54) when X =
+ . Nowx = - 1isa characteristic eonstant of K{s,, &),

for X iy, &) can be obtained from the kernel K{s,, s) for
Canl
Dirichist's problem by interchanging s and s,. Thus K

and K are adjoint kernels, Then from Theorem IX,
Chap, 117, K’m,. &1 and K(s,, 8} have the same chamct{,nstw
constants with the same indices. But A = + 1 has bee n
showi by Theorem XIX to be a characteristic constant nf\
mdex tfor Ky, &), Thereforeh = 4 1isa chara.cterl}atlc
constant of index 1 for K(s,, ). According to Fl@ﬂholm 5
third fnndiamental theorem, (54} has, in ge_m(:ra],lip solution
for s = 4 L. Butif f{s,) satisfies certain g :"’}}conditinns,
then there will be a solution.  This condition is

f o
39) J()p(s)ds A

o O
whore »{5.) is a solution ()f tIm assoclated homogencous
integeal dquation )

gl _
(5% wis,) & f K (s, s)p(s)ds,
i"\\

the kernel of w hu}ﬁ\ the adjoint of the kernel of the integral
equation (54)4 u'nd('r consideration. But A =+ 1 is a
characteristicidonstant of K(s,, ) of index 1 and sy =1
is g soluhﬁn of (59}, as shown in §47. Therefore, condition

(5%) M\t'mnes

.ng}j" fif(s)n's = 0.

\ 'I..'nl{“:

ss this condition is satisfied, there is no so]ution.. It
this condition is satisfied, then there are oo! Sfylut-lt.)ns.
By referving to the definition of f{s), we sec that (60} gives

the condition
{
f F(s)ds = 0.
i}

Q)
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Thus we sce that v{(z, y) is 2 solution of Neuman:'s oroblem,
Furthermore, by referring to Theorems XX, ZXi and
XXII, we see that v(z, ¥) satisfies the condition. (4} of
§38. Let v(z, y) be any other solution of Newinann’s
problem which satisfies the conditions (A}, Torm the .
difference \

B(z,y) =¥ (r,9) — v(z, "),

Oy
oY
Then it follows that G
N
1) Ap = 0 on I, '\’;:"
2) % = 0 glong ¢ N4
In; Y,
o)

From Corollary 1T to Theorem XTI iig.iisllibws that
&=10C{(a const’anfﬂ"on r

~
<N

Therefore, N

WY 4 ¢

Hence, there are oot s6littions of Neumann’s probiem which
differ only by an d@t?ve constant, Furthermore, these are
the only solutipnas\of the problem which satisfy the condi-
tiong (A). Weslave now the following theorem:

Theoremy ’XXIII._——Ga'?;e-n a closed curpe ¢ satisfying the

condz'ia'gg{s;})"'. - - 4) of §36

“O e, y=u) o<, <1

N\ §0) = &), 5(0) = 7{l),
“Nhd

the function F(s) continuous on (, F(0) = Fl), and

(61) IIF(s)ds =0,

then Neumann's problem has ot solutions

#=9y4g
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! 1
2 zf.-’.r(s) log ~ ds
] ¥

and k(s) (s o solution of

i .
1) = fls) + 2 f R(s., h(s)ds S
0 .
N ©
Jor N = 1 iwhere K(s,, s} is defined by (52).  If the condiion
(61} is wint salisfied, the problem has no solulion, a4

where



CHAPTER V

N
HILBERT-SCHMIDT THEORY OF INTEGRAJ EQUAS
TIONS WITH SYMMETRIC KERNELS L\

O
Solution Expressed in Terms of a Set of Fundanténtal
. S
Functions AN 3
\v
I ExisTENCE OF AT Licagn Ong CHARACTIRISDIC CoNaTANT

7

53. Introductory Remarks.- -The Fredh6lm theory of a
linear integral equation with a parameter A:

X 3

) w(®) = flz) + \ lbmx Du(0)di

ON

has been developed under the assumptions

A) Kz, ) real.
B) Kz, 1) continiious.
) K(z,t);.—éQ‘ohR:a Selbali<h

For the Hilbert-Schmide theory a fourth asaumption 13
made that $H Kernel is symmetric
@ D) Blr't) = K, 0).

Tt dshelcar that the resulis of the Fredholm theory still
holdh, " But, besides, 5 number of new results will follow
Atem the additional condition D). These results were

“\first obtained by Hilbert,

N\ Fredholm obtained the solution of {1} by considcring it
as the limit of a set of linear equations.  He did not earry
through the limiting processes, but guessed at the solution
and then showed independently of the linear equations that
the guess was correct, Hilbert started from the finite system
of lnear equations, of which equations (1) may be con-

116
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sidered w o limit, and actually earried through the lhmiting
process i etuil. K, Behmidt, in 1906, obtained Hilbert's
results directly withouat using the limiting proecess.  Hilbert
and Hehide do not make use of Fredholm’s results. We
shall, huwever, avail ourselves of these results whenever
they lead o snnplifieations of the proofs.

The firei fundawental theorem of Hilbert’s theory is the

following. ¢ '\“\'

Theorem 1. Erery symmetric kernel hus at leaséy (Ogte -
charaelerist o vonstunt (real or tmaginary). ¢ [’

Our pressi of this theorem involves several l(‘mmas which
woe will give st \ ,\

We give an example due to Kowalewskd, whith illustrates
that & ke which is not symmetric dees.iot neeessarily
have & churneteristie constant. The ki;l"nel

Kix, ) = sin ':r:q) o8 (o), [01]

has no characteristic '(mstant:;,; 1f

s

3 wir) = )\fjsfh* (rz) cos (rt)u{f)dt
J{\

has no solution oth &{ t"nan w =0
Equation 3) mn he written
<& 1 _
af, t.,K:; A sin ml cos (rOu(hdl = ¢ sin 72,
\s
wher "%lw a constant yet to be determined. Substitute
ﬂ}\?g;expmmum for w(z) in (8). We obtain

000\’ "; . X 1 i
\/ ¢ sin wr = ¢\ sin rxf cos (at) sin {(xi)dt.
&)

1
But f cos {wt) sin (at) di =
i
Therefore esinrr =0,
whenee e =10,

and w =0,
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Thus this particular kernsl has no charucteristic con-
stants. This shows that Theorem 1 indeed states a
property peculiar to symmetric kernels.

64. Power Series for %(—g")z-——'l‘he following proof of

the theorem is due to Kneser, It is based upon &

s
lemma, concerning the expansion of %_E;\)), which holdg )

O\

under the assumptions 4), By, O). g
From Fredholm’s first fundamental theorem, if LRJ% 0,
then (1) has one and only one solution given by &

b i

Dz, i; \
@) “@=ﬂ”ﬁ/“%mgmw
Consider the expansion of D—%’(—i)—)\) ada POWer series in A.
Now D{0) = 1 ¢ and, there.ﬁc}’ré: there exists a ¢ such
that if [\ <p then

® DR, I <,

%

Hence, sinfze Dy &\ﬁermanently convergent, it can be
expanded! into AROwer series convergent for A < p. Then
¢/
1,0
(6) 5@)\-: do + dx 4 dy)e + ..., N<p.
’\\w.
Nomf,}z)(x, f; 3) is a permanentiy converging power serics

e 1
@ X Hence, also, the product Dx, t; 2 Doy ean be

expanded into a power series in A:

{7) 9%’—({%9 = ign(x: t)k'n
) ne]

' HarkxEes and Mogrvzy, “Theory of Funetions,” §83,

N
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and the «viex will be uniformly convergent as to z and ¢
in B for [\ < p. The right-hand member of (7} has no
term [ree feom X for

Die, 60 = ARz, &) + .

Substitube iram (7) in (4) and we obtain A

[ .
®  w - sl + 27\" St oo N <n (O
o= it e\
We have “esn able to 1nt(‘1(hange the order of the m{egla-
tion and <vimation in (8) on account of the “untform

“
W

convergeies of Zg (x, £,
w—1 0\¢

The cocficients g,(z, 1) can be d(,telmmed by comparing
(8) with the expression for the solatien obtained by suc-
cessive approximations (see §8) 1.0

N

R
(9) wiz} = f{z) + Eg\ﬁf Koz, Of(dt
oyt —‘1 o
where K, (», f} are the«tbelated kernels gnen by
(10) 1\,‘@,‘{) -fK (x, §)K41ls, s,

.'\,
This soluta&w by successive approximations is valid if

N < h\”g Ty where A is the maximum of |K(x, )|

on, ‘E Donute by r the smaller of the two quantities p,
\_w 1
415y Then (3) and (9) hold simultaneously for

|)‘| <7. But (1) has one and only one solution; thercfore
(8) and (9) represent the same function, and coefficients of
corresponding powers of A must be equal. Therefore,

t b
f galx, Df (0L = f K.(z, Hf(t)dt, (x)
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where the notation (2) is used to mean uniformle ns Lo 2.
Hence

|
{11} fb { K.z, t) - g.(z, ) J"f(ﬂ)f!ﬂ =1, (r),

But K.(z, £) and g.(z, )} are independent of f und, for a
given valuc of g,
' N ¢
K’i(x_‘ {} - g”’(x! {) = J[({) Ot\”x
N
is a real and continuous function of {. Now -:j_jﬂ"i}"ﬁulds

. . . . £ N 1.
for any choice of / which is eontinuous, ('.L}g:gu?w then

J©) = M(5). Then (11) becomes R
[lwofu-o &
M(t)] d =0,
s ’x:\\«
Hence AN\
M) =0on [aﬂ
Therefore ‘“ \N
{}n(Z, '5) ____%;K}i(‘c: OJ (:’E! t)

SN
N

and (7) becomes

N\

Mz, LN >
(12) — ¢ N = Kﬂ Jﬂ))\”, by <,
D T 2 Eale O3 p <

Thus, under,\ﬂ}‘e".-fl-swmpt-ions 4), B), €), we have proved the
following thearem

The{o{& IX—For alf sufficiently swmall ralues of X

AN Dz, t;\) &
A _(;,T;,)_l = 3 K, O\,

:,.\\; w=1
\> the series converging uniformly as to x and t in I,

Theorem 1I holdsg when { = 2z, Then

D £y, Fy A
"%(% - Z_IKn(x, 2N <

¥
ad

and an(i‘;- TN s uniformly eonvergent on [ab]
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Integrate this equality with respect to z from a to b, We
obtain

f ] o b
) e, x; (v = N K,
f'f"iﬁ\_f'.){ (£, 1; AJdx ,gl [ (z, z)dx

Let us intraduce the permanent notation

(13} /- K, (e, 2)dr = U,, a conglant, t\

k 4 3
« \J

and recatl from Chap. 111, §20, equation (27) §, :'N““,'

i \\/
fD:t'r?\)——)\D’(P\\
i \

which may be written u";‘:““
DN N 2
\ ..I.\'” lu h <?1
1) )\{'X ”z::o( +1 r[ I

We have t 1115.}%{\'0110\\11@ corollary to Theorem IT:

\\sl

Corollyr A 4

I
RS ¥ 2
(14) \> 1){)\) 4 ( A 1X |Rl<'i

*65 Plan of Kneser’s Proof.—Suppose that K(z, #) has
th characteristic constant; that is, that DM =

0 has no
roots,

f

D'(x)
Then the quotient Doy can
be directly expanded into a power series

real or imaginary.

VN 3 g
DY) zcnx,

w=0
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and this series will be permanently converging ! Bug

{14) holMs for |\ < ». Then
2 Cﬂ)\" = 2 Unq.ﬂ\", ‘hi < ¥,
1= =0
hence N
Cn = ervi-l N\, ¢
oA\
and, therefore, o\

o h 1
Z UnyiA® is permancntly convergents, )

=0 '\'\,"

Then also? is \/

i A\

(N ]
2 |Uﬂ+1[ |7\|“ permanently Lonvergent,
#w=0 % X

X

N

\y¢

and also ROy

(15) 2 [Uasd) \=+1 4g R@ﬁiﬁnent-ly convergent.
n=0 SN\

Then the series fornded by omitting any number of terms

from (15} is also, el nancntly convergent. Hence
N\

ca
(16) Z.f«U‘zn' [® s permanently convergent.
»=l./ :
We haa\?é.\[fi}oved that (16) was permanently convergent
by dssuming that K{z, t) had no characteristic constant.
1 (then, for a given kernel K {%, t) we can show that the

jQ.m'i'CSPUnding series (18) is not permanently convergoent,
“we will have shown that K(z, t) has at least one charac-

teristic constant. We are then going to prove that if, in
addition to the properties A} B) ), the kernel Kz, ) is
symmetrie, then the corresponding series (16) is not perma-
nently convergent. Theorem T will then be proved.

"Hakkness and MorLey, Loe, cil,, §83.
* HARKNESS and M ORLEY, Loc."cit., §76.



§56] HILBERT-SCHMIDT THEORY 123

For thiz purpose we need some auxiliary lemmas on
iterated keryels,

66. Lernmas on Iterations of a Symmetric Kernel—The
iterated kerin ] KL (e, £) was defined by

(17) iz, ) = Kz, 1) N\
Ralc, &) = fK(x ) K, (s, t)ds. L\
\\ "
By successive upplications of this recursion formula "{VE “find
(18) Koulw, 13 = f f Kz, SI)K(SLR‘Q‘S'
K (sas tldsl . dse.
In Chep. 11, §11, we showed that\ '
(19) Koagalz, 1) = fK (;r» s)Kp(s, ds.

We now establish the folloWu‘Yg lemmas:

Lemma 1. -If K {x, ONTs symmetric, then K.(x, ©) s
Symamelrie,

Proof —Dy {IS{\}J have

K, (t SL') _f fK(t S;)K(SI, ég) .K(-gn—l; x)

. dSn-—l

i..\{ K@ )
o%“,_-/‘ fK(S], t)K(sﬂj 31) 3 en—l
,?}"\ 81 . . - dsn-l

/

\\ oh account of the symmetry of K(z, t)

| f fK(x Sas) + . . K8z, s)K{sn, 1)

dsi. . . 81

Now make a change of notation.
For

put

LA g . . Bpa Sy

841 Sp—2 . . . 82 S



124 LINEAR INTEGRAL EQUATIONS [§58

Then

h
K?l{tf x’) = f - fK(JE: S])r{(sh ‘SL') - {\—.:"'\:"-'_!" E)

(T’-_H'l PR [‘fé’n_]'_
= K.(z, {) by (18).
{z, 1) by (18) A
Lemma IT~—If K(z, 1) satisfies the condilions A} B} () D): \
then K.(x, £) = 0 on R. “’x“\
Proof —Buppose K.z, {) = 0 on R, and 5111‘:;_1(';:\'({}31:-Lt
7 1s the lowest index for which an iterated km‘m’l,\ufgushcs
identically: ) ;
K@) # 0, K@, ) 40, . . ., Kyala,0 80,
KLz, f) =0, B
o\ _.
Then certainly, by ), we have n >:'I.l‘ Then _from’ (19
it follows that sll following tteratedkernels are identically
zero. Then RO
Koz, ) =WOon R
Now either n or n +1 mws}t.;:i;é an even number 2m;

2>, or 0 4 1.
AR

¢ &<\J
‘\\Kgm(:c, £y =0on R.
But by (19) O

&/ &
\K:\g,,f(x, f = f Koulx, )K,.(s, t)ds.

&
This eq\‘u}lity holds when { = 2. Then
O

13
\‘.::’ sz(fb, .’.!7) = f Km(:l,', S)Km(s: ’l")dS
o \Y; y

N0 = / b[Km(x, s)]zds

on account of the symmetry of K (x, 1).

But Kyn(z, 1) = 0 on R, Therefore, since K ,(z, ¢) is a real
function of 2 and ¢, we have

Koz, 0) = 0on B,

Then
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But o ; or n—2|~1
Hence T T ?; or ;l > 0forn > 1.
Therefor: > . ?_

4

Thus we have contradicted the assumption that K.(z, &)
was the firs! teraled function to vanish and the lemma g N

proved. \\ )
It i nove ol that if Kz, t) satisfies the COIldIUQQS A)
By oy oy, 11 m }x Wz, £) satisfies the same (,ondltujn;» ’

Corollay g U. am > 0, ’\

O
PTGQ]r‘. — {-'?2 m = f K‘! m (:n.' x) (gx\\';

© Now  Ku.le 2) > 0 by (20), sint;e‘f%u(r, £) # 0.

57. Schwarz’s Inequality.- L. Lt‘q:;CT:) and y{a) be real and
continuous on the interval [eh]{and « and v any two rcals
constant with respect fo T,y ”lxheu

/ wa\) vl a0,

since we have the \()ufue of a real function.
Expand md W Bobtain

b b
”f *W F 2uv f p()Y(@)ds + v? f ye(x)dz 2 0.

This ‘*\Ml( #finite quadratic form and hence

If npfﬂyf/u‘)d'r} _f(,o?(x)dxxfw(x)dx-
\w

/This is called the inequality of Schwarz, In like manner,
We can prove that if ofz, ) and ¢(z, y) arc real and continu-
ous on £ in z and ¥, then

b 2
[[[ gofx} ?J')',f/{;r} -y)dxd.y]
& b . .
< [ffga?(x, y)dxdy][ff¢’2($: y)dxdy:I.
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b8. Application of Schwarz?’s Inequality. -\WWe have
obtained one expression for Iy,

{13) Ug..=fK2,‘(x iz

(22 ff [K (z, t)J dtdr > 0 by Leonms II O

We now proceed to determine a seeond ¢ NPHressly, mm U
Now by {19) we have \

\
2
"4 N

Kzn(x 3) = fKﬂ 1(:!‘ S)I\,H.l(\ {d{:
H we put ¢ = %, this equality beeomes

X 7\
Kiu(z, ) =f ﬂ_l(;-: {)\Is,H 1{, a)dt

=f Is;v;::g(x, i)}\’nﬂ(x, i,

on aceount of the symm(*ﬁ'n}’ of Koi(z, £). Then

(23) UZn —ffKn—l(x t)K-n.L}_(TJ !)dtﬂ?x

Apply Schwarzé\lnequality to the right member of (23).
We obtain . ()

¢

[f xw“‘l(x DKz, t)dtd:c]
,\ ﬁ[f fK n_l(x,t)dzdx][f fbK er(2, t)dfri:c]

\ \ %hlch if we make use of (22) and (23), may be written
UQE!’; —(‘ L.i'

Di*tridf: both members of thig inequality by Usper Usa.
Thig is possible, since 1/, , # U0, Uy 2 0, We obtain

In-z ’ Uzﬂ+2

u U
(24) Yonis  Ua
: U2 n ;- U2 A=2
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Putting successively m =2, 3, . . . | », we obtain in
this way ti ~equence of inequalities
f;‘--. [ (”9 LTE Lr.;
A - S g A
Loy 77 { an—9 - U‘ - U2
Therefore o - A\
25 U A gy, N
(25) Sz gt O
Apply now {lie ratio test to the series . O
ax @ . :":’S
(16) 3 s =37, O
el n=1 AV N

to find the ro:dius of convergence in A, We [inc.l'
[ Usre , U, INY
o NIkt A :
S RN 2 N
Therefore 2 series diverges if R hdd
U, X

2

) ‘:"‘ g
NS 1,
3
N

.i"‘)’\\i > % :
£ \“/ g
Therefore, the serbes 18 not a permanently convergent power
series in X, 'Bis“completes the proof of Theorem L.
Theoreng. 12 For a real, symmelric, conlinuous, non-
idemicall-y;{éan-r.'shz'ng kernel K(x, ) there exists af least one
characienistic constant ho.
W'&l raark that for every value of Minthe
"?\\’I?lﬁile; without a cirele ¢ of radius

\:?}—2 =

EZ,ZL";M[)\]?“ diverges. Hence, from
n=l

that is, if

A-plare

FeN
‘=" when expresscd as
DY) P Fro. 18,

A series in A, diverges for all values of X
Without the circle C. Then, certainly, D(A) = 0 has a
least one root within the interior or on the boundary of ¢

(14) and (1),
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. OrrrocomaviTy

69. Orthogonality Theorem.—From the Yredizslm theory
1) Two associated kernels K (x, 1), K(, 1)

Rz, t) = K¢, 2) O
have the same characteristic constants witn the sm@é
indices; if, then O

2) hoand Xy (A, 5 A} are two characteristic rr;\«.‘::;'%:.mts of
Kz, t), and henee of K{t, 2), and e.{2) is a, (it bumental
funetion of K(x, 1) for Ao, and ¢1(x) is a funf_fghnmzt:ll fune-

— b .
tion of K(x, #) for Ay, it follows that \\sb(,(af}&.(fx}dx = {.

But if the kernel Kix, 8 is syrnmet’r‘i},‘{-hen @) 1s also a
fundamental function of & (x, ) foP ;. If, then. we write
¢1 = ¢)(x), we have ™ :

5” S
\

b :.
_[ %@:}}m&(z)dm = 0.

Deﬁniiion.—Twp,‘\"f‘unctions e(x), ¢(x), continuous on
the interval [qp] %«'{sz‘iid to be orthogonal on [¢b] if

o) =I ool (@)dz = 0.

We have this proved the following theorem which is called

the o&fh";\}gonah}ty theorem:
_Theorem II1.— 7 Kz, 1) is symmetric and o,(z), ¢y(z) are
Jfusillamental functions of K(z, t) for N, and A, respectively
<\; (Ao 5% \1), then o, (%) and ¢,(7) are orthogonal on the interval [ab].

[}
(26) f eolT) o1 (2)dx = 0.

. As an illustration of Theorem 111, take thc symmetric
kernel K(z, g

= 1= Bz, (04
Kz, 8 = {(1 — )1, [£1]
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which hag the charaeteristic constants
Mo=0rt o on =1, 2
and the corresponding [undamental functions
¢.{r) = sin nnxz.

It is then well known from the theory of definite integrals

N

that Ko\
1 "'\\ v
{27) [ sin #rx sin predzs = 0, (n # D). R P
S <N
60. Reality of the Characteristic Constants. 4B\y means

J

of the preciding theorem we can now provecthe following
theorem due to ITilbert:

Theorem IV.—If K{x, £} s real ml‘symme!rw, cori-
ftnuous, ard  # 0, then all of the‘s?gggactenstw constants

are real. Y
Proof. -—Suppose that there igha characteristie constant
Ao not real: A\

3

ho = My Py, we # O
Then the homogene ()lm\a]uatmn

V f Kz, Hu(t)dt

has at least cmo’contmuous solution @(z} = 0:
\s.

28 \O%w) = (uo + in) f Kz, Dol

. \\ elr) = (p ’ :

) 1)::&11’1)“39 oiz) real, then separating the real and imag-
~IRALY parts of (28), we obtain

29) o) = o f "K(z, el
(30) T f 'Kz, Dol
From (30) ’

f 'Kz, DeOdt =
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gince 7, # 0. Then from (29), ¢(x) = 0, which contra-
dicts the assumption that ¢(z) #= 0. Therefore, eix)
“cannot be real.
2} Suppose ¢(x) = v{zr) + dwlx), where v(z) and iz
are real. Then (28) becomes \
b 3
(31) v(x) + ww(z) = (o + iv,) f Kz, r)[v(t) + it [ﬁ%fﬂaﬁ\’
AN

Separate (31) into its real and imaginary parts. We ’Lyj)’fa'm
N

b 1 PN
(32)  v(@) = u f K{z, v(i)di — », f K (z, i) e

b b v
(33) wix) = ,u-o/ Kz, fhw()dt + p“/‘ I\‘(x, Dv(Bidi,

Multiply both sides of (33) by — ¢ .;ndx\adal to (32). We
obtain \J

s

viz) — wix) = (o — iv,) K(:L f)[\« () — i r.‘)Jd{

,[;

Therefore v(z) — @w(z) = qo(’x) is also a fundamental fune-
tion of K{a, 1), b(lougl\g t0 Ao = o — iv,. 1 we now
apply the orihog%@}}ty Theorem 11T, we obtain, sinee

RU #= kﬁ) p
..‘.“.‘ &
¢ } f pl@)o(x)dr = 0,

which m@y be written

O\ b
‘j.';\ f [”2(55) + w%x)}dx = (.
PN a |

\”‘Bu‘i; v{z} and w(z) are real functions. Therefore
o) + wiz) = 0, ()
and henee ¢@) =0, wx) =0
and therefore wlz) =0,

which constitutes a contradiction. Therefore A, cannot be

of the form X = o 4 75,(v. = 0) und hence A, wmus
be real.
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Thix re=ult might have been foreseen from the analogy
with the nnite system of linear equations:

u

u(t) — MR R ) =) G=1,.. . ,n)

with deterssuant .
' — )\:‘i!\’u — }\hKlg Coe — }}LKIN

i — ;\!I.?.H;gi 1 ha AhKﬂ PO - }\Pi-K‘.’.n f:\:\.
- MEKw = MEKa .. 1 KK

But it s woll kuown? that, if K is real@d Ky = Ky
then all of the roots of (34) are real. [\

In the ivedholm theory we prove@\fhat g £ r where
g Is the index of A, and r is thq(r‘n}ltiplicity of the root
Moof BNy =10 lor the casi's,..ﬁf a gymmetric kernel,
Hilbert has proved® the fol}éy}“ing more definite theorem
which we sfate here withelit proof:

Theorem V.—For aredl symmetric kernel the inder q
of @ chararvieristic r.'-m@'(mt \, 35 always equal to its muliiplicily
rigo=r. )

61. Camplete\ﬂ‘o}malized Orthogonal System of Fun_dg-
mental Functiohs.—Let us suppose that Mo is & characteristic
constant Pfffe symmetric kernel K(z, 1) of index ¢. Then
th(} Q(l}{:;}’\i'(}'n .

&NI u(z) = A f bK(x, Du(t)dt

al

, 1>h39’ been shown to have ¢ lincarly indepe

[
3 ) 4 ! - &
\ JJ.)<RL b . 1 £ a—1y & H I‘H'h ’ _, q;ko)

ndent solutions:

'
' - s ?f’a—h ?Ja', Yoatly - - - 3 Ya
Pal) = ~omtL : L Y. b
i} T, o . 3 Tab Fa gty - ¢ 002 Q;Ro
) oot
'Ulf', L y’n—l: Yoy Yatbh - - 1 Y
o= 1, PR (D

PHee Bociee, *Intwduction to Higher Algebra,”" §59-

Yor proof, see ilory, §39.
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For a real symmetric kerncl, A, and, therefore, also
¢.(%) are real, sinece the arguments in tho numerator and
denominator of the cxpression for Yul®) arc all real. Any
other solution \Z»a(x) 1s expressible linearly in terms of these
¢ sclutions, or in terms of ¢ lincarly independent linear
combinations of the ¢, (x)s: N\

(35) Valz) = cuorlm) + . . . 4 cm;wg(x), A\

where the determinant of the coefficients |cagl 2 0, [u}.ﬁ‘ =
¢ ~

L ... ,q:! does not vanish, '\\

We are going to choose such a systom of fundamenial

functions in such a way that they fo‘[%“whdt is called a
normalized orthogonal system.

a) Normalized Fundamenial Fiaz‘ctwns —A function
is sald to be normalized if .\

(Y) = f¢2(x)ffx =1.

If ofx) is a fundam(\@bal function belonging to h,:

o) ~\ f K, ), Mw) ” 0}

then ¢ (z) ‘\Cgo(x) (c = 0) is clearly again a fundamental
fumtloQ belongmg to X, and we can choose ¢ 50 that

(66{\ () =
"{hat ig

\ ¥

b
\/ CZf Sx)dr = 1,

whenee
&) S 1
\f f o2 () dz

[
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Thig vaiue for ¢ is finite, real, and = 0. Hence we obtain
»

Lo

b) Nevmualized Orthogonal Systems.—We now propose to

(38 Ylx) =

deternsine the constants o4 in (35) in such a way that the
fv the following two conditions: o
f , . N3
1) Al y.'s are normalized: o\
N/
I A}
(39) / Yllade = La=1, . . . %
wftr 2 ~\.“
2) Two ¥.’s with different subscripts.are orthogonal:
) a\/
{40) f%(r)%tx)ffx =0, a #{{Iﬂa g=1 ... ,¢9
For this yurpose we put ¢ (z): 2"co(z), where
NP

O
Then the um{l'{ﬁén f g2(z)dz = 1 is satisfied.

Next {,home, Yo(x) as a lincar function of ¢; and ¢2. On
accountN#/(38) it can then be expressed linearly in terms of
¥ 33&“&

'x,./ do(x) = apdi(x) + aspelx).

.;\VL now determine a; and e so that the conditions 1) and

o~ O 2) are satisfied for ¥ and .

N

From (40)
& b
{42) (V1 ¥a) = Otlf vidr + a2f ‘ni’l(ff)‘:”(x)dx =0

Therefore, on account of (39),

= — ax(ify @)
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and (41) becomes

¥ala) = 062[592(30) - (%902)%(1)]-

We can now determine a, in such a way that ¢.(z) is
normalized provided

N
(43) w2} — (Yreaia(x) # 0, A
But (¢1¢2) is a constant and if (43) is not true, then <\
e2(x) + crpi(x) = 0 AN

which is a linear relation between two fundg,{{i'sfitai fune-
tions ¢, and ¢, and, therefore, ¢; and v, swOuld be linearly
dependent, which is contrary to hypgthiasis. Therefore,
¥2(x) is completely determined as 8 lirgféar function of ¢
and gs or of ; and ¢y, Now ehoog.(e'i,{ca(:z:) as a linesr fune-
tion of @1, ¢, ©z, OT, what amoupﬁs,,tb the same thing, 8z a
linear function of y,, 12T T

¥al(a) = 31%§:‘2|§;J92¢2 + Baws.
Apply condition (2), We ’S{Jtain
(i) = 51(}.@{(\1)\‘{“ Ba(d1¥2) + B:(¥ie) = 0.
But (Y = L 3}6} (¢1d2) = 0, therefore
\;wfﬂh) = 61+ Bu({es) = 0.

Hence A
i"\;:' b= — Bs(¥103).
Alsjq\%“condjtion (2} we have
"\/ (¥o¥s) = Bi(yay) + Baldds) + BalYuia) = 0,
\M\T;om which we derive
Bz = — Bslues).

The expression for ¥i(z) now becomes

Yalz) = 33[‘93 — (el — ('#2&03)\"/2]-
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Wo care wow determine 85 by means of condition 1), pro-
vided il is not true that

(44) ea — (o — (Paea)gs = 0.

But {44) cannol be satisfled, otherwise ¢y, ¢, 3 would be
fincarly depandent, which is contrary to hypothesis. Hence, s
By can e = defermined that ¢;(x) satisfies the condition§

Iy and 210 "T'his process ean be confinued until ¢ fum,hens\

AN
Yolx) nre olfained, satisfying conditions 1) and 2), Qr,, as
we iy, ‘oiny a warmalized orthogonal system, N

The .= s0 obtained are real, they are furthermore
linearly icjepemdent.  or, suppose we hady™ \

\

el 4 enbolzy + . L. (:%%,QJ:)

Multinly by ¢ (#) and integrate frmn\( to . On necount
of (307 undd (10} we would ohtam ¢y =
A linear ceansformation &3

LR Y

0.

e = i —[— - ’%‘E{nxn (3 = 1! ey TL)
is sald to b (}Ithogon\}lf
e
\\ 7 n
5 B

¢/
The tlan&)‘f}mtion of reetangular coordinates with fixed
Oli&ll\ \1 transformation of this kind.
“\\ econdition on the coefficients which insures this
Qﬁl‘it‘l ty of the transformation is
o i
(40) 21’3\';‘0;;; — 11: 3 -

0,7 = K.

7=l

Now consider the definite integral

b
f ¢ Wel@)da
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as the limit of a sum

il
(46) }j_jl;;h%(x;m(aa) = f g2 lx) .

Then the analogy between equations (39), (40}, wnd {45)
becomes apparent, QO

¢) Complele Normalized Orthogonal System of Frunda wreind
Functions.—To each root of D{A)y = 0 there belongs sficha
normalized orthogonal system of fundamental funeiions,
Now we have shown that D{X) = 0 has at Iea;'ﬁ"(i'}m root,
There may be a finite or an infinite numbm;Q’Ré!_mh roots,
If they arc infinite in number it follows fr¢mithe theory of
permanently convergent power series t alvthey constitute
a denumerable set and they may be z‘n’i;?a.nged in the order
of the magnitude of their absolyte Falues:

MM € g R <

and each ), has a duﬁnitggﬁid;zx gi. We have then the
following table: A\

"y

1
Characteristic ‘m}nd(‘x Normalized orthogonal
constant. \\ ' fundamental functions
- o~ e
</
At £ ) ¢ v, Pt
)\?:\" 2 LA gt
Y . . oL
.\‘
Z”\.;' Ao /e V”ln; N
)= !

We now change the notation and denote the functions ¥
in the order in which they stand in the following line:

i
'pl:-v-:\bq;l;‘:h?r---:S‘r’q:zr-‘ -:\blnr-' '!"{’ﬂnﬂ

by the symbols ¥u¥y, . . ., ¥, . . . and the charae-
teristic constants to which they belong by Ay, A, . . .,
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My o . owhere some of the M may be equad, for inslance
Moo= Ao = A A = Ay =L L= Mg
such a sv=iein of fundamental functions , is called a com-
plete norenlized orthogonal system of fundamental fune-
tions.  We snnoup the preceding discussion in the following™\
theorem:

Theorem VI - To crery real synuneiric kernel there b@n\gs
o complete aormatized orthogonal system of funda}mni(d
functions Lociowith the followeing properties: R N

oo dsoa fundamental furzdwn l{z’(mguu fo A

i
i) = rf (a2, I ]d(.
it ’x:\\./

2} ; wolride = 1.

3

X
A\
L D

/
s M

H o b o N ‘
By / Sl ) —."0“'"(} # 5)
&3¢
Disrend. (8
Fmrfu.{af’u!uf STunclion o(x) iy expressible in

.h Jor m‘\
T \S(,IJ/ (I) + .. + fr r,..(x)'

Pryof of 3 Y——If V.. s belong to the same A, they are
Dlth{)?—g\l ‘4 by ronstruetion, if to different X's by Theorem
IIT, &
wof of 5.——elr) helongs to a certain charaeteristic
~tl\rrl‘~i ant N, and is. therefore, linearly expressible in terms
" %t\ llf the fundamental functions ¢y (x), . - . 5 ¥h if we use
\\ the notation of the table. .
Exampte —For the problem of the vibrating slrimg we
had the kernel:

(1 —tHr, 0%z
| (1 — ) ¢ <
with the charaeteristic constants X, = 7, n = L2,

of index 1, and the corresponding fundanental functions
¢.(z) = 8 sin nrr. Thesc functions ea(z) will form &

7 K(r ) = !
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complete normalized orthogonal system of fundsmental
functions, if

1
LN
\/f sin? nwx x de
(i N\
Our fundamental functions are then e
. o\ S
) = /2 sin nrz. % D
N

ITI. EXPANSION OF AN ARBITRARY Foyeniov“Accornisag
- N
T THE FUNDAMENTAL FuxcTioss oiva) CovrLies
NORMALIEED ORTHOGONAL Q}'STJ;M
A

62. a) Problem of the VibratingS:tr‘xhg Resumed. The
problem was to determine y(z, §) Eb.4s to satisfy the follow-
ing conditions (see §26): R\ )

59?2’ = 29 .s:’}:’ )
{48} 1) ap = ¢ FERN
) 2) (0,0 =@, 1 - 0.
{60 3) wla, 0);::/.\)" (), flx} an arbitrary given {unction,
y,(x}‘Q}s = F(z),F(z)an arbitrary given function.
We attemptedfo find a solution in the form

2K

o ¥ = elthulz)
and Qu}:ud that u{z) must satisfy
J‘S}) iy + Ay =0
g tlx?

g
NS

N2 u0) = 0, wl) = 0,
" and that e(t) must satisfy the equation
a2
d—zi' + ACQQO = 0

‘The boundary problem in % had non-trivial solutions only
when
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n a pusitive integer, the solutions being
w = B sin nwx.

T complete the solution of the partial differential equa-
tion (4%} with the conditions {49) and (50), we must next
integraie the differential equation for ¢{f) for the values Q

. N
. A\
" {p + 0.0 £ '\
e+ nirite = 0. \J
di ¢ A
N
The wewst general solution of this equation is '\'{.’

o(f) = A, cos nxel + B, sin'uxed’

{4, .. arbitrary constants), which xgibés for a solution
L R . . s
of the problem of the vibrating simn

4 = (A. cos nwet + Ba sin nret) sin nre.

This expression for y will gatisfy (48) and (48), bui, in
generad, it will not satisfyd féﬁ). In order to obtain & solu-
lion of (48) which will’satisfy both (49) and (50) we notice
that, owing to theoljnkar character of (48), the series
" .\\‘.t' )
(51)  y = Py(da cos nrt - By sin nact) sin #r
\YZ

will also:séti’sfy (48) and (49), provided it 18 convergent a_nd
adm't\glﬁ%'t-\ﬂ’o successive term-by-term differentiations with
resgcet to £ and z.

SAssuming this condition satisfied, it remains, then, so to

o"\;“‘.t'letermirm the constants 4. and B, that (50) is satisfied:

y{x, O) =iA“ sin nrzr = f(x)
n=1

o
yelz, 0) =2 B, nxe sin nwx = Flz).
f=1
But this is equivalent to asking us to develop t'he arbitra-.rlly
given functions f(z) and F(z) into sipe serics, OT, SINCE
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¥ul®) = /2 sin nrz, into a series proceding aceording to
the complete normalized orthogonal system of fundamental
functions of the special kernel K(a, ¢} defined by (473,

b) Determination of the C oefficients in the General Problem.
The problem just considered ig a particular case of the
following more genoral problem: Given a symmetrie kernols
K{r, 1) with its comaplete normalized orthogonsl sysl{‘!}f\;}‘f{
fundamental functions ¥, with corresponding (rharaeujijkt.if:
constants X, it is possible to expand an arbitrary c:(;n'tkin RIETIT
function f(2} in the form e \ e

@) = Senm. w0

oo\

¢
Theorem VIL—If fiz) 45 @ contzlﬂ'?bus Sunction and is
expressible in the form W

L M4

(52) 7@ = Beix)

and if this series, if i-;g’é%}}te, s uniformly convergent on [af)],
e )

then the coeﬁcienis&\are given by

A\ b
Qs = f }xmw)dx = (f¥u)
::\s.' @
o ./ :
Prog i«.—"I\Iultlply botk: sides of (52) by ¢a(z) and integrate

withirespect to 2 from g to b-

e

N\

\”\';J _[}(x)ifn(x)a= faz:,c,,-%(x)%(x)dx
= E./u‘bcv%(x)‘l’n(m)cix

=L

I "
. 1, » =4
sinee XN () d _——J '
[lﬁ/(}l}/(’s)x [0,0;5';1._

\
S
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IV. Frrysson oF THE KERNEL ACCORDING TO THE FUNDA-
winTal Fuserions oF A ComrLeTe NORMALIZED
ORTHOGONAL SYSTEM

63. z* Determination of the Coefficients.—K(z, 1) with
{ fixed sz function of 2 econtinuous on [ab]. Hence, if we. O\
assume that A(x, £) can be expanded into b uniformlyy’

. \\ v
convergent serics on | ab | O

Kz, ) = 2ebla), '

/

~
A,
ther, 7y Theorem VII above, we have O
(53 f K:r;, x)‘p\m‘)da:.
But A

Yalt) = M, J{t DWnl(2)de

Kz, Dfa(z)dx,
L f (z, 2
on aceount of th\f\ﬁy ‘mmetry of K(x, ). Therefore

n
N\ ¢, = —J’RL)
and Q> )
NS, N0
“:’,\\ K (.'ry U - 2 hy

'\ TPhus we obtain the following corollary to Theorem VII.

/

Corollary—1If Kz, t) = 2 o, (x) and this series, if
infinite, @s uniformly convergent, then

(5*1} K(I, 3) — z%y_{x;';’u {ﬂ

Ls
»

¥quation (54) is what Kneser calls the bilinear formula.
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If we apply this bilinear formula to

(1—-8z,0< <y

K, ) = ((1_;;){,! £x<1,

we oblain the hypothetical expangion :!

o

2 sin wrzx sin art
K(ﬁi, f} = 21_. _I.l_r{??:r?rgs_.n_. Tr_ ’\:\.
b) The Bilinear Formulg for the Case of o FiniteNnmber
of Fundamental F uneciions.—The hilinear fm:mﬁ!a holds
always if the complete normalized orthogonaksystom son-
tains only a finite number, m, of fundamdgtal funciions
¥,. The formula to be proved then reads\)

m - Nt
(56) Kz, ¢ = z E"(_Ilfw(i) .

[N o\ X,_,
To show that (65) holds, wqgfi:{)iv that the difference
' N\ )
B6) H(, 0 = K@, g SO0 _ (L
..“\ p=1 Ay

¢ \J
Now Hz, #) is c}m\imxous, real, and symmetrie, If, in
addition J7 2 0f then there would exist at least onc charac-
teristic consbant of H(z, ¢) considered as a kernel of an in-
tegral cquation. Hence, if we cgn show that H{z, t) has
no chal'&@t'é’ristic constant, then it follows that
O\

Hiz ) =0,

al
NS

»@Eppose that o(z) is a fundamenit) function of I belonging
fo a characteristic constant, o of H, then ¢ 18 continuous
and = 0, and

b
o) =p | Hz, t)pltdr,

' This formula iy sctually true.  For a direot proof, see Kxeser,
“Die Integralgleichun gen und jhre Anwendung,” §4.
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Whene:, substituting for I{z, ) its value from (56},

B m B
BT} ol = o f Kz, olf)di — pz‘“T(“’) f v Do),
@ =1 u a

Multiply both sides of (57) by yu(z) and Integrate with\

respeci e o from ¢ to b, then A
. g Nt

h b b :"\.
f @il il = pf f Kz, Dfa(n)edide ™
u th [} \l“:‘

L3

" b IS
- 923\1‘ ¥ (@a(@)de f Y Op()dt
= [ N

rora

b W
= {’f,;,,,(z)@(t)ds;—i\g-'f ¥a(t)o(d)dt
nsa W MAnda

=0, (n = 1:‘-‘:-‘}- Cym),

Therctore, irom (57), AN

N\ Tl
ole) =9 [ Kz o)t

N\ .
By hypothesis o(#}*1s continuous and # 0, and so this
cquation show4 that ¢(z) is a fundamental function of
Kz, belofiging to p.  Therefore

5 =@ .+ onbela)
When@é}:’
2 \ 3 b B "
..\~ff"\ f olz)pnlz)ds = f ¥a(2) 2 0, (@)
o :,,/ " @ p=1
\\ =g, =

Therefore of ) = (¢, which constitutes a contradiction,
Therefore 77(z, 1) has no characteristic constant and
H(z, 1) = 0, and hence the bilincar formula holds for m
finite. 'This gives us the following theorem:

Theorem IX.—If there are a finite number m of charac-
teristic constants \,, then
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S @)

K(z, 1) = ‘:V_;-— v
¢} The Bilinear Formula Jor Kernels Having on fifinite
Number of Characteristic Constants.—We proceed 1v prove
the following theorem: ~
Theorem X.—If there are an tnfindte number of chinde

iz, @)

2] £ \'
- L. . € N\ .
leristie constants and > T , s uniformly conpelyent in
A ¢
L]

N

p=1 s W
\

T and t on R, then N
_ b @) D
Ky - S

¥

Proof —The proof is entirely a.naxl.qgo‘us Lo the proof of

Theorem 1X, TForm R
(58) Hiz, 0 = Rz, ) OF 000,
"™ p=1 ”

H is continuous, for & is}émit-inuous, and the sum of the
infinite series in {58) isf;i’o continuous function, being a uni-
formly convergent sgries the terms of which are continuous.!
Furthermore, H isJeal, for K and ¥, are real.  Finally, H
is symmetric, for ¥ is symmetrie, and each term of the infi-
nite series iq {% 18 symmetric. Hence it follows, as under
b), that if HAEt) has no characteristic constant, then H# = 0.
Suppos’{:ﬁ(x, ) had a characteristic constant p. Let
() Bela fundamental function for X, belonging to the
(‘:h,%{wteristic constant p, whieh im plics that () is continu-
Qyjs and # 0 and satisfies

b
elx) = pf Hiz, ettt
which, on account of (88}, may be written

(2] i, ‘
) 0@ = [ K, ot - , @G
a T u=1 4

1 GUURsAT-IlEDHmﬁ, “Maihematical Analysis,” vol. 1, §173.

N
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The serics i1 {59} 18 again uniformly convergent as to x in
[r:b]. Wiultiply bolh sides of (59} by ¢.(z) and integrate

with respect to  from a to b, We obtain

L b b
‘f¢nwmm=pj:fK@nwwmwm
x b PN :t\:\’
- 925\ th (I)u'zn[a:)da:f ¥ (Defthds,”
p=1"Tolu 1) % N/
N
which re:luees to

i W\ .
f Goleteloide = )\ ,,b (o)t — ~ {[ Walf)p(tidi

7

= 0, {n). ”\1.

f K(xr, i)go(t)dt

Henee we infer, as under b) that ¢(z) = 0, which contra-
dicts our lx,-umphon ga\,c) # 0. Therefore, H{x, ¢} has no

characterisiic cor %m/t and, bence, Hiz, t) = 0.
Since o seriegy l\1 a finite number of terms, functions of

z and £, i3 ’ﬂw v5 uniformly convergent, we may combine
Fhf‘OI{‘I]}n i\ “ind X into the following

Therefore, from (59),

The\lerm XL—If Jsf/ (x) } are o complete normalized

O:ﬁmg(mof system of fur:(i’mraental functions belonging to t:w
Chﬂ?fi'f!{’mm' constant \,, for the real symmelric kernel K(z, 1),

Janrd
NTREG

18 uniformly convergent on R, then

K(z, 1) = E’-‘-%%”ifl.
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64. The Complete Normalized Orthogonal System for

s L0,
the Iterated Kernel K.(x, ).—The scries Z‘,b,\r‘; b4l is

not always uniformly convergent and therefore the bilinear
formula does not hold for every kernel Kfe: ). Bnt we
shall be able to show that it does always hold for {he i ated s
kernels. For this purpose we prove first the following:

Theorem XII.—7 f

£

| \'

Ko
¥, (x) } are a complele norpalzed
N/

i

orthogonal  system of fundamental functions Fol K (x, 1)
. sl
belonging to the characterisize constants l N, l oAbt 1 (z) 1

N | )
are a complete normalized orthogonal sysieh of fundamentul
Junctions for K. (z, £) belonging to the c\kg}acﬂen’szﬁ'c consianly

- {kyﬂ . :*:“x
Proof.—a) By assumption, ) is continuous and £ 0
and &Y
Ny
(61) 4 < K, ov0a,
N\ a
whence we derive ~,\

[ bK(e, m)wfxﬁ =}, -[ ’ f EJK(;;, LYKz, D)y, () dtdzx,

. AN/ ..
which, fl: (61} and our definitions of iterated kernels,
may b(;»{a"i‘.ltten

N , b
‘.:’;\ ?X(s_ = va K2(5) '{)'}'ﬂ (":)df.‘
...\::. . > b
\\m‘, if we multiply by X, and put z in place of g,
b
(©2) 4@ =0 [ ke, vy

From (62) we derive

b
v@ =5t Ky, ()t
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in the zame way that (62) was derived from (61). Con-
tinuing lhiz process, it is easy to show by mathematical
induction thut

I
(63) (3 = A f K.z, 00 (0.

Therefore, 3,* 15 & characteristic constant of K, (x, ), and . O\
Y. e) iz o Tundamental function of K.{z, ) helonging to A
AN \ \“..

By I is «lill necessary to show that K. (z, ) has no chea*
charaseteristic constants than the 3%, and that everydimda-
mental frnction ¢z} of K. (x, £} can be expressed 1{{11@, form

=C¢. 00+ ... + Q,%,(—’C)

Let p be anv r'imrd(,tvnstw constant of K.‘\Qa; £ and ofz)
be a furdamental funetion of K, (z, i) bélo‘ngmg to p:

(64) oiz) = pf Kz, t)ﬁo(;f}dt (x)“ # 0.

We musi then prove that ,'{’l'

\
S g

1) p = 2"
C2) els) 2(" ﬁ:r)
Let hy, fy, . LD hn be the nth roots of p:
(65) \3:1\4‘3}"",0, (b=1, .. .,n.

Build u&"ﬂio functions nG;(z) as follows:
(GFJ:&}-‘ (@) = ofx) + h: f K, Helt)dt
AN

~O
N/ + hff Koz, Oeldt + . -
S
-+ f.-”_I/ Koz, Del(Ddt,
fori =1, . ., »n Add these equations and cancel 2

factor n.  We obtain

(67) Gi@) + . . .+ Ga@) = o@),
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sinee hy* + byt 4 . . + ke =0,
fs =1, . . . L no—~ 1),
Multiply both sides of (66) by K(z, 2) and integrate.
We obtain
b 5
nf Kz, 2)G:{(x)dx = fK(s, Tip(z)dr - - ~

n—1 b I ) £\
2 h.-*’f f Kz 2)K {x, f._]gf\z‘)?)?tax.
s=1 s 73 . ‘\“,

Multiply the members of this equation by h,.”f)uf‘ "= p
by (65), make use of (64) forr = 5, ¢ = &, and of Lhe defini-
tions of the iterated kernels. We obtaig &)

L] [ A\
nk;f Kz, 2)Gz)dz = k‘-/ K(s, quf(\t)dt
b ANO
+hs f.K»(z, De(t)dt + .
s:Gf:::‘ b
+f¢4ﬂ_:tf Kn—l(:“:; ﬁ)(p(ﬁ)(ﬁ + 99(3),

which, on aceount of(B6}, may be written, after canccling
a factor =, o)

£\

&.\)ﬁ Kz, x)Gi(x)dr = (e,

\¥;
Suppnst;:-.{or some value of 7 that @, (s) 0, then A; is a
charagteristic constant of Kz, 1) and Gy(2) is a funda-
menfal” funetion of K(z, 1) belonging to h.. Therefore,
th,e exists a value m of v, such that A; = X, and henee p =
\‘}m" Since Gi(x) is a fundamental functien of Kz, },
V 1t ean be written in the form

(68) Gda) = Covi + . . . + Cidi

But the G:(z) do not ali vanish identically, otherwise from
(67) we would have o(z) = 0, which cannot be. Fence

P = A",
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and from 67} and (68) we have

i) = Copu @) + -+ O,
which coupleles the proof of the theorem.

V. Auxiriavy THEOREMS N

N ¢
65. Bessel’s Inequality.—Ior the further discussion¢of))
the bilinesr formula we need the following theorem: ()

Theorermn XIII.—{ iven AN’
1) fixd, veid and continuous. &0
20, =1, . . ., m), veal and .cm{r‘z'g}uous, con~

stituting o iiormalized orthogonal set:

N\
b [ 1, r =xg\\"

-[ ‘;’r\f/sdx = :‘ U,“-J}‘(:#\s?
then 4

mor b ‘~;::}’ b Ty
o 3 [revewfs [ |

Proof. —i.ct €, be a{@ real constants, then

(NS " g
ﬁ(-’ﬂ) - Z(?sgbs(x):l de 20,
iy '3'\ =1

@
whence, aftdr squaring the expression in the bracket,
W

_ } 2 . b

| sim 4= — o3¢ [ aw e
e . s=1 W

:w\’w

QY + [[zeme [as5 o

But

L[ 2 7
[ Eesio]e - F e [
T §=1 =i “ h
+22,C,C f Yo,

(7, %}
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Now

b b
f ide = 1 and/ bl = 0

by hypothesis. Therefore,

f T i@%(x)rdx -~ R
2 §=] §=1

Y\
But €, are any real constants and so we may choosel )

b l“}‘
=ff($)%(x)d;r.. o
\\o

For this choice of C., equatmn (70 becomo%

f [f@ J dz — 22( HOMTA x)da:)\x'\

m‘s'

+ 20 o) = o

¢

‘&“‘

whence we obtain (69).  ~3¢
We now upply (69) tu “the particular case where

@ = Kz, g

for a fixed £ mi‘the functions ¢, are a normalized

orthogonal sysbem of fundamental functions of Kz, t)
belonging to L

Equatxq\ 469) now becomes
b b4
(71) \Z( f Kz, t)ws(x)dx) [K(a:, t)]dx.
E\t"
il
) 4 = [ K, o0,

L) =\ f K, o))z
(72) = )\gfbK(a:, t)l,f/s(:r)dx,
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on accouni of the symmetry of K(z, 1), Now Kix, ©) is

confinucis on £ and, therefore,

(73) |Kiz, 0] £ ¢ (a constant).

Applving (72 and (73) to (71), we obtain N
i <(!\] 2 . R
2(]’%—') < G2~ ). KoY
ao-l * P \ ot

nve the following cmolhry to Theorem XH}

APy, (s=1, . . ., m) are m?malazed

Jrvddeinental ﬁmdmm of the i.erug{"K(m &,
lhe churdeteristic constant A, then W

Thus we '’

Corol
orthogoi:
belonging in

\

i \'
(74 ) (\z’;ﬂ) < G~
s=] 4 X }

From (745 we obfain by mtog’l.mng Jrom a to b

2 b LN N
2: il‘ f [3&3(1)1 o i b — a)h
ol

But f {g,s(;n)}ﬁx = 1 by hypothesis.

e 4

Therefore \\\"
(75) 2 s < G'}(E} — a)?

the ine Qs .g\ holdmg, for any finite number of A, and hence
for ih%m n of the 7\ 8,

Theorem XIV.— 2 P s converyent.

w4 1--1

\’ Proof- -The proof follows from (75) by applying the
Principle of nionotony: if u; arc real and positive and

Ut a4 .. Fuan S 4, W)
that is bounded, then

18 convergent,
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66. Proof of the Bilinear Formula for the Iterated Fernel
Ka(z, t) for n < 4—In Theorem XI it s statod vhat if
Z'P_(“”)_’J’ {t)

¥ k"

— was uniformly convergent, (hen

Z’J’v (1;\)”&” (t) = I{(-T' f) N

o\
We have stated previously that this series is noet sal:gi}xys'
uniformly convergent and, thercfore, the bilinear, {(}{‘Irllﬂa
does not hold for every kernel. But we shall Faable to
prove that it does always hold for the itcrattad»i@e.?helz:»‘..
Sinee, according to Theorem XII, ¥, (@) s complete
normalized orthogonal system of fundainéntal functions
for K.(z, ¢) belonging to A7, the bilidear formuia for the
iterated kernel, if true, would readi\\/

(76) Z”&—(i—)‘bﬁ) = {{3"’(5:, H,n>1,

By referring to Theorem XI Just quoted, we seec that (76)
. . ol (t
will be proved if we carghow that Zgy%ﬁ” )
ove s st o the ,
convergent. Wa,prove this first for the case 7 — 4. We
desire then to gew the uniform convergence of
N\ S/

A\ ¥ ()
IR s

is uniformly

(&) on B.

We ”qp’ﬁy the generul test for the uniform convergence of
théserics

'"\\ Nes o
)
N\ Zu,(x, f), on R.
=1
For any ¢ > 0 we can assign an N depending on €, but not
on zand ¢ (N,) such that

Iun+1(x: t) + uﬂ+2(x: t) + = + u,m,(:v_, t)l < & (R)
for every n > Ne for any integer p > 0.
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Vise 110 notation
ntp
Ar.‘r: =
wes |

¥ L ()
Ayt

We have thie inequalitios

T s 42, 0) Zw f»cllw U)IZM o

vl N o

. . . ..}
We now ke use of the mequalily

(79) 2({ b, = \Za 2b~

(e, b, =0 el positive), which arises flo‘\‘n the following

i !
3
5

g

‘/‘,

eonsidersiion: given the matrix '\\/
|! A . \\
b a | form the produet
] bg PR bp ]
r’.~':. i
E‘af 2 ab,
RN =
(80) p ‘3;; r=1 p=1
|f) “ bp. ~ kil r
O [Zab Xb
s <} =1 p=1
\\\ _ T a, ', 0.
," " {w,rl=1 b b

From ﬂw\xm quality in (80) follows (79), which is the alge-
braic "m“ﬂmu of Behwarg's inequality (21) of §57. Now

dppl\ (79} to (78) with a, = 5{/;\(2:), b, = ‘J/)\_y(f)’
j‘e‘l‘tam ’
§ I*’_’;\ f_-'!‘-‘JI_!Y’;-’_‘J.‘g Z " @ \/Z o2
vl Ao v \/ S M T
But by {74
oy ntp

> LW -

v

603, B g g,

P p=n-+1
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. 1, . .
By Theorem XTIV, E)\—z B convergent, and b by the
¥
gencral theoremn on convergent sories,

lim d,, = 0,

=t
whoere
tg 1
(82) dnp = 2 h,ul ~ft\:\~.
p=n-E1 ‘,.\\ ot
Substitution from (81) and {82) in (78) gives \ 7
4 ’0‘
20| <636 — ., ,.7\2 :
The right member of this inequality ig i*ri"{{}.pm e af =
and ¢, therefore (77) is absolutely and unihlmly rgent
i x and ¢ on R. Thus we have ginoted the falowing
theorem S\

%
SN\
L)
1

Theorem XV.—-ZE-(%)%L(-Q;:e.ls""az’;sofuEfffy i wndformly
N o oY

convergent in  and ¢ on Blwnd

2@.@)’&: (t)

AL R 1 = Ki(“r'; z)'

We can now\{ifoﬁ} that (76) holds for » >4. Supposc
that (76) hulzc 3 10 the nth instance:

N/

\ = S ¥ @, @)
(83) ,?i“‘\ Ku(z,8) = 2——}\—__

{\Y . .
the ‘sorics being uniformly convergent in z and ¢ on £.
Maltiply both sides of (83) by K(z, z) and integrate with
i»\;:ss'pect tozfromatod, We obtain

No/” b
Q (84)f Kz, 2)K.(z, )dr = E%_(f)'fbf{(fr ), (2)de

and the series on the 1
asforandt Byt

b
-/a‘ Kz, o)y, (2)dy = _\&,A(s}

ght is again uniformly convergent
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[=13

and
o
/- ]\.—(5} a:)Kn(.T} t)dx = Kn+l(z’ !).

We obtain, then, from (84), if we put s = z,

. (e 2\
K n+1lf$, EJ = 2 ‘l; )_M_’T(i) .
i Y 7 \"\

The iniduciion is now complete and {(76) holds for » g\;é. -
Kowalewsiit gives a proof that (76) holds for,srg;j.‘="2,
whenee fio1s our induction proof, (76) holds for'wn & 3,
and thereiore for n > 1. ..«:\\'

67. Ar Auxiliary Theorem of Schmidt.~~Beéfore we ean
take up the problem of the expansiop,:oi‘ an arbitrary
funetien 2ovording to the fundamental functions of a sym-
metric ieinel, we need another auxiliary theorem due to
E. Schribie, o\

Theoiers XVI.- -Lel h(z) bg:ig:éiﬁtz’nuous on [ab]l, Kz, t)
real and cmetrie with {h@:{)ﬁfﬁpleie normalized orthogonal

~

system of fun<'i’a.nmnraEQ(unctz'orw {%,(z)} belonging to the

YA
characior: i}, con.sz(iw\}s lh’}’ then

RN

4y it NPz, DAL = 0, uniformly as lo z, then
¢ d"L
2\ .
NS va(mh(z)de = 0, uniformly as fo n.
§ (

a

R\ b
AB) I f Lula)h(x)de = 0, uniformly as lo n, then
~O A

N\ b _
f Kz, Yh(t)dt = 0, uniformly as to x.

Proof —-4) Multiply both members of
/]
f Kz, Hh{t)dt = 0, (z)

. ‘ EL
II\"j‘*"‘l-lﬁ\"-r'lx'I_. “Einfithrung in die Déterminanten Theorie,
Teubner, p. 533, $200, 1900.
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by ¥.(z) and integrate. We obtain

(85) ffﬁ(x D) h(Ddidy -

which may be written

B b O\
/h(.!)(f K(x, t):,b,,(a".)d.r)dt =), L
[ a ’f\“\

b o ’."\ A
But f Kz, th.(x)de = “”;\"”-- O
it b

I g

Therefore (85) may be written X7,
1/ P\ N
A wah()dt < 0, (n). \¥;

Therefore f Ya(BYh(Ddt = 0\( )
B) Our hypothesm 15 that \

fya,, :r)h(:uj(%a: =0, (n).

We have previously shown%hat

£ )
o

Z'Jf (m)'.ff At)

i8 uniformly CODXTgent on . M ult1p13 both members of
this equahty by h{w)hi?) and integrate. We obtain

f f ,Is;(x DR@A (O deds — 2 f f ¥, () X

h{z)+, (DR(Edidz.
'{‘}‘1& right member of this equality may be written

\”\ 2)\ . f ¥ (DA () de. f v, (DR,

which, on aceount of our hypothcsk,, vanishes. Therefore

(86) f f Balz, Bh(x)h{)dzdt = 0,

But Kz, 1) = [ Koz, ) Kalt, s)ds,
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since K.z, §) = Ku(s, £} from the symmetry of K. Sub-
stitute this value of Ky(z, £} in (86). We obtain

[ /{f;[ng(I, S)K:(1, s)h{x)h(O)dsdzdt = 0,

which mav be written

T M b \
f‘ Koz, s)h{z)dz xf Ko, s)h(t)dt]d =,
N ( s ‘

i -/ [f Kyfz, SJh(x)dx] ds = Q,\\

B'lt-f #ulz, s)h{x)ds 1s a real con\mghmus function of s.

N

’\\

% 3
7

Therefire O\
b o\ o7
f K, (SL‘, 6l’}(@ax = 0: (3)!

which, if we change our hotation and, in place of s and «,
put  an ¢, and remeﬁrber that K.(z, i} = K., ), becomes

7\

7@}{ (z, DR(OdE = 0, (z).

Multlph JJO\tfl members of this last equation by A(z) and.
ln'regm(e\ We obtain

w 4

\ ] &
ﬁm fszfx,t)h(:r)h(t)dxdt=0.

b
But Kua, 1) = f Kz, K s

Treat (87) in the samc manner as we have just done with
(86) and we will finally cbtain

f bK(:L, DRt = 0, (x).

This completes the proof of Schmidt's auxiliary theorem.
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VI. EXPANSION OF AN ARBITRARY [uncTION ACCORDING
T0 THE CoMPLETE NORMALIZED ORTHOGONAT, BySTEM
OF FUNDAMENTAL FUNCTIONS OF A SYMMETRIC

KEnvEL
AN

68. We are now in a position to selve the f 1.111('1&1‘11(:11&11
problem stated in §62: Given an arbitrary funciiog yﬁ%),
O

to represent it, if possible, in the form O
f@) = 20,2, A\
» (Y

when the ¥, (x) are the fundamental functiend of 2 wumplote
normalized orthogonal system of the symmetric kernel
Kz, ). \‘\\

We have seen in §62, that if sueh an expansion s possible
and, moreover, uniformly com-:pf‘gént, then the eonfficients

€, must have the valucs Ny

boont
C, = f SO, @ds = (),
that is A =S wv @),
N ’

We now prow;ds‘ﬁ following theorem:
Theorem EVIL—If f(z) ¢an be represented in the form

R ": 23 .
(88) ,\*:.\ Hzx) = f K(z, hg(t)dt,

N/

C\ .
wﬁm 9(z) is a function continnous on | ab |, then
P

a\""

0 1@ = 2 ) on M

and the series.is unmiformly and absolutely convergent on [ flb]-

Proof—a) ¢ orvergence Proof. T1lse the notation
t-pn

4oy =3, ), p > 0,

F=n+
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Then, fron: the gencral convergence principle stated in
§66, the worios

(89) > (@)
#=1

eonverge: naiformly on [ab] if for every ¢ > 0 there ex1sts

\
an & depondent upon ¢, but not on #(¥,), such that for ever§
\V

% > N, i1 iz {rue that Ié.,,pf < e 0On [ab]. Now
] l'\'
i) = | faiz)de )

(90) f [ ke Va0, fc)*ﬁ’l\\d'x

on accouny of (88). ¢
The right member of (90) mayhe wrltten

/ JU)( f K(,x, t);b (:s)da:)dt

But f K (is i, () = 'P (t)
Therefore L"l(}) b%omes

©1) D7 ) = e,

NOW {‘\"2\”' ¥

N/ a+tp

\\\ a2 3 g ]e@i
?hh‘fefme by (91), v

ntp
e Bl €3 el

y=nl
But from the algebraic analogue (79) of Schwarz’s inequality
(21), proved in §57, we have

Sllgw) \/2( b )2\/2# 2,

¥ (x) (xJ
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and from (74) in the corollary to Bessel’s weqamtity

SE < 6w,

G being the maximum of [ K(z, )| on R. N
If, now, we use the notation A L
A+ ~f\t‘~\~
dnp zz (5";’#)2 % :‘"}
y=hn41 (N"
we may write o K7,
(93) Iaﬂp‘ < G\/(b — a)d,,. \:"\\\.
But \ 4
o w\,/
(94) 2 D
r=1 “x\

is convergent, for O

n

" b o ’.:}, » 3 R
2 (v = > (f g(x)w.i:)‘d:c) < f [ G () | 4o
p=1 =1 [ %:.;’ > 3 I3 .

N b RE
from Bessel’s i equality™\ 69 65 1 f [r xrj|drisa
$ Inequalifg69), §65, anc / .f(JJ

finite fixed const-u{é*%ndependent of n, and therefore

27 S awr

is bouriui‘é?}wfor EVery =, and hence, by the menotony
prinei,kk}*’(%), Is convergent. Therefore, lim d,, = 0.
W\

o= 0

Hsfyee, from (93), lim |Am,l = 0, and therefore (89) is

NS B—kn
N

Ainiformly convergent on [ ab], and from (92) we see that it

is also absolutely convergent. This completes the first

part of the proof, [ remains to determine the sum.
b) Summatz‘on.—-—Put

M) = 1@) ~ 30,0,
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From (43], f(z) is continuous, since g(x) is supposed to be
continunus and the .'s are continuous and the seriesis
unifornidy convergent, hence k is continuous. We will
have proved that the series represents f{z), if we can show

that f ”[k{x)]zfi:c -0,

for then .”:’\t\:“'
Riz) =0. N \»}
Now '\
@ [ mw e = -3 N
We compnte ’x’\>
N

() = (fn) —.»2{1'%)@,%).
But (¥ ba) = [1 ";n
Therefore ;
(96) (gl (fbe) = () = 0.
Whence, from (05 ,\\'

f’ N2

(973 Lfe(z) de = (fh).

[
But \{\x{\ GR) = f fle)h(x)dz

and, ‘i)} hypothesis, as given by (88),
,.\j'j}“ fx) = f K(z, thg(t)dt.
Therefore, '
[

(fly = f f Kz, t)g(t Vh(z)didz

74

(©98) f o0 ( f K(z, .e)h(x)dm)dt

NO“' f I}.n(x)h(x)dx = 0, (?’L) by (96))
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henee, by Theorem XVI, §67,
b
f Kz, Oh()dt = 0, (2

and, therefore,

. {
fK(x, Dh{x}dz = 0, (8) A
whence, from (98), . o
Jh) =0, () RO
and, theréfore, from (97), LV
h(z) =0, (),

which completes the proof of the theo,rja}rf: We have the
following corollaries to Theorem XV, “

Corollary 1.—(fy) :%ﬁbﬁ by to1).
Corollary IL—If ¢(z) 45 ,.cbj%;z"-rmous, then

b AN\, o
99 (aedgldl = S 09,
(99) [ K(gl)gtz)dt § N, ¥r(@)
ana? the series §g g;:li‘m‘fmly and absolutely convergent.
This follows fro'm‘ eorem XVIT and Corollary I.
Corollary I{I}*’—I 1 9(2) and h(z) are condinuous, then
& oA o

b
N K - 5 (o) (hy)
["\ f Kz, Og)h(z)dtdr = vz:;l_._j\:___,

/

Thi}}% sometimes called Hilbers's formula. Tt follows
frod™(99), if we multiply by h{z) and integrato.
o..\: W )
N VIL. Borvrion op THE INTEGRAL EqQuaTioN
69, .Schmidt’s Solution of the Non-homogeneous Integral
Equation When A Is Not a Characteristic Constant.—As

an application of the Jget theorem, wo will now give
Schmidt’s solution of the equation

(100) @) = ulz) — f bK(x, Du(t)dt.
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Ay #eoessary Form of the Solution—ILet u(z) be a con-
tinuous ~olution of (100), then

o ’ b
(101)  vir) EM = f K{z, Qulddl.

The fineion vix) satisfies the condition (88) of Theorem

XV neid, therefore, N
A
{
v(z) = 20, Ke)
v '\“:’s'
the scres Leing absolutely and uniformly, Gosivergent on
[ab—l. -1 aecount of (101) and Corolla\};? §68, we have
(102) 2(”‘*" )‘&‘( )
Mulriply (100) by ,(z) '1n\t.l~ mtegrate We obtain
(A = (?.u,f/) - f fK(:c Ou(iyp, (x)dtde
Lt t
= \a}- ) — J\f AU
R 2 (w,b ) - uu’» 3
‘\)
w hlch'\lun be written
e
\“' O, — Nl = M)
D .%‘. hen N = X, we have
~O { 1,
QP = 2
N is not a characteristic constant, then d # Ay, dey - o - s

and for such values of A (103) holds for all values of » and
hence, from (102),

vir)= ”"; 20

=
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Whence from (100) and (101)

_ N (),
(104) ulz) = f(z) + xz;lxy g,
Hence, if (100) has a continuous solution wla), this colution 2\
18 unique and is given by (104). Replacing 13 ~vbgl
(W) by its explicit eXpression, we have for the :‘.\cl[l:.f_if.?’n:\t@f)
(100) O
o 1 i i (“}‘

= - OROATNE

(105) u(z) = f(z) H\EL‘” = s .\f_Jrr'.ﬂ(Jgf;.. ,
\:“’\

If for a given value of A, the serics

p §

Ll X'\\J

Fe06m 2
A .’:‘}

is uniformly convergent in ¢, wq,gé}n write the solution in a

form previously obtained: AN N

.2

*. b _
ufx) = f(i)"i— )\[ Kz, ¢; MFHds

whera

< v=t
The solutigh given by (105) has an advantage over that
given b{‘“ QI"t?dh()hn, In that it shows the meromorphic
{:hara,p(ér of the solution with respect to A and indicates
the firincipal part of u{x) with Tespect to each pole A.
\ 2] Sufficiency Proof —T¢ Temains to show that (104) is
Nabsolutely anq uniformly convergent and satisfies (100).
1) Uniform and  Absolute Convergence— The series in
(104) may be writteyn as follows

- 1 ()
(106) DI )
r =] _

-_5\,,
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But by Corollary IT to Theorem XVII
> @

v

is absoiuiely and uniformly convergent; and if there is an
infinitude of characteristic constants \,, then as ¥ — w also

1 "4
A, — %, ol therefore ——~- — 1, whenee also (106) 13.

X S

)\, \\
% \"’
absohu l., and uniformly convergent.

2) {104} Satisfies (100).—From (104) we obtam
/K(x Put)dt = J(z) +)\2%® V(@)

ffxu: ) [f(t) +>\2 ‘f‘p\\jlao,(z)}

The right-hand member may»be wrltten

{107y jix + )\2 )\(ﬂ/ .) ‘x{?;(x) - ?\f Kz, yf ()t

— z\"\(ﬂ’) f Kz, Db, (d

S8
But O | Kz gt = g_i@
A</ e

theref qrs\{iU?) may be ertten

f@”" ) Zh(f’;/ ») ¥, (x) i 1 __] — }\f Kz, OHfhde
\c‘.ir

o 42 3 B v K 050
By (99) this last expression reduces t0 f(z) and hence
u(z) — )\fbK(a:, tu(Ddt = fx).

We have thus proved the following theorem:
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Theorem XVIII.—7] 1 fx) ds continuous and L iz nol a
charaeleristic constant, then

u(x) = fla)y + }tfhK(x, Hu(thdt

has one qnd only one continuoys solution u(x} Given fu O

1] 7
u(z) = f(z) + RE[X-—I_—)\ f J@, (0t |y, ::;f.rﬁ‘.=.-{§

‘,N."
the series being absolulely and ungformiy con.f-'crgc'i{.é.

70. Schmidt’s Solution of the Non-homggbnziis In-
tegral Equation When A Is g Characterigtic” Constant.—
Let us Suppose that A 45 5 characteris}ié consiant, for
example, A = \; of index g, 50 that \ v

N\

>,

N 5;
= )ll = Ag = W= )\q.
L XY

A) As before, we find that, '.

(A =N, = A,
Now, since A, =), y{%\l, 2, ..

we have L\
(108) V=00 =19 . ,q.

&/

We have this’q necessary conditions on f. If » > ¢, then
A, — As='("and

’§..¢ A )

'.\ (u’pv) = in_ z

— as before.
AN » A

e

\N,Oi'v vizr) is expressible as before by the formula (102),
but for p = 1, . .

N !g)

-+ ¢ the constant coefficients @;\L’)
are as yet undetormined. So we write

v{z) = Cﬂh(x) + . -+ Cq'pq(ﬂ:) + Zm; )\—(f&_”))\l,f/,(&“)

p=g 1Y
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whencee
(109)  wivr = flr) + Ciffa) + . . .+ Cobyl(z)
{
+ az; Ly,
=g41
By Tins 7100) converges is seen as hefore.  To show that
(1097 sati-fies {100) we first show that
f'f’ ) ’t"‘\‘
n.(r) = flz) + ;\2 b (@) R,
p=¢+ l « \J
satistivs ..'?-:}{)'). Tor this proceed as before and\We find,
after s veduetions, &v

wola) - { Kﬁr, Yulltidt = flz) \i\

P\ZJ f__ff:)%(x) 32& Dy o)

r=yt1
But (f4.: = 0 for v = 1, 2, 8, g, by (108) and thus
we gel

(110} RE) jK(:n, Du{)dt = flz).

[t remains to shm\\\ ﬁhat
uia) ‘—\18‘:,0 1;] —+ C].Hilfl(x) + ... + C,ﬁh(ﬂ?)
W& u(z) + pl@)
satisﬁm'ﬁff(}}. Now
{.\ I b .
BN f Kix, Hultidi = wolz) — A f K (x, tus(t)dt

\
N

o) + gfx) = A f Kz, Dot = 1) by (110),

<>~..f

o(x) — beK{«’v”; Dot = 0,

fince

Val) — X f Kz, (di = 0@ =1, . - - 0"
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We have thus proved the following theorem:
Theorem XIX.—Jf \ = Ay 1S @ characleristic constant
of index q, then

u(x) = fa) 4+ )\lfbK(:r., Eyult)dt

has in general no solution. Solutions exist only if o
ne
(,Nl’u) =0) (a = 1: e )q)' \\
Then there are q™ solutions given by N

= b 4 {'—;.
M) wle) = fz) +2 3, [A . f TORDN b 12
p=g+1L 7 a \ 4
+ Cila) Q;z\\: L (),

where Cy, ., | | Cy are arbitrary goff;siants.
71. Remarks on Obtaining a Soldtion.—To ohtain the
solution of any numeries] préblem, one must ceinpute

D) in order to obtain Xy OT0 obtain the ¥, ono must

solve the corresponding hdmogeneous equation. Having
obtained the ¢, and th ., one writes down the soiution
at once by direct subsfitition in the proper formula, (104)
or (111). B\

In general, D{N) is an infinite series given by (5) in
Chap. III. Héwever, for many simple kernels all but a
few of thefirst terms vanish identically and we obtain
DQ\) as 4 polynomial in . By the method of §25, Chap.
1T, DO can be obtained in finite form as a pelynomial
in Mfor every kernel K(x, 1) whichisa polynomial in z and ¢
~The ¢, can be computed from the formula for w,(z) given

Nif Theorem VITI, 321, Chap. III. By the method of §25,
Chap. III, ¥, can be obtained in finite form for every
kernel K(z, ) which js g polynomis] in z and ¢.

EXERCISES

Compute D(\) and obtain the characteristic constants x, for the
following symmetric kernels for the specified interval [gb).



§711 HTLBERT-SCHMIDT THEORY 169
Ans,
1, Koo i D=1 -k
2. Nia ot POy =1 4A
1Y
3. R NI Dy =1- 5
4. Kia s owIn [, 2a) by =1~ 1;}\
b Kii o010, o 2]. DY =1 -5 Q
RZ
6. A -], I Dy = A "j?{}\‘
2 e’
T R st 01, PN =1-— 3?\‘@"
~ T,
8 Wie : . oou ot (1) Py =1 »C& —o1 03\'
1
9. Kir. . 4ot =20t PN o= R\Q‘:@ L e 2,160
Solve the ;-'.,iI:':\\-iu;: ctyuabiuns: x“\\\,
0.0 - won R w@y =
a ..“‘J
L { J X _
0 uir: - o ?\f witiell, (h# 1&:‘ ule) = r+'2_(lt}\
] ’,\x
. 1 N ,
12, t!(_.z;:': - '_‘ — a4+ [ 'lt(f‘}'l‘fé;& wlgy =5 — % 4
) v N ) _
13, w(x A [ i +«i<(\1]n’! for » = —6 1 4335
\V i .
B t\ & = (Y]k]- '}' ‘\/E%J?) for a = A = -6+ :.i\f‘ﬂ
(\“) H_'l_?_] = (".{l — '\"ﬁr) for A = h = -6 — V3
1
L TS ,—QA;—'})\/ fr o O, N FE Ry R
{ ” B
o) A g yE 2=V
/% 2 = 2——_ — T
»:}\ dns wfr) = 4 + 6 'i‘ 4\/& » 46— 4V3
NN 6x — 121z = 3,
\:../ ur nir) = N4 {25 — 112
16, wlrt - (1 — /300 + {—6 + 43/3) (x -+ Dufidl.
0

5 Gy
Ansu(z) = (1 — V3 + B+ V/37) — (1 + .-3-;)

1
16 wlr) =1 + /800 + (—6 — 4\/’?/ (x + fult)de.
0

Anso

() = (1 + Vi + Bl - VED - (1+z).



CHAPTER VI

N
APPLICATIONS OF THE HILBERT-SCH 30T,
THEORY O

L BouNDARY ProBLEMS ToR ORDINARY Lygsys Dip-
FERENTIAL, FQUATIONS

.ml\g’"
72. Introductory Remarks.—a) Formulafion of the I
lem.—We have Previously considerad tho\li;o undary il
9,

2 'x\«
gx_?f T M= 0, u(0)=\0, u(1) = 0,

We shall now discuss the gengn-g}s type of boundary nrohlem
of which this is a special eage) ﬁamely, we take the gineral
homogeneous linear differénitial equation of the second order
with a parametor ) cgstai'iled linearly in the cocfficionts of
e N\

42 '\;
HOFE o) §j;‘ + [R(x) + AS(.T.)] u = 0.

N
»

We first l;sdﬁtfc this equation to a self-adjoint linear differ-
£/ Gir)
. Vo, . 1 F
ential eguation b multiplying it by — — ¢/ 7@
a\a,\kcq Z blymg Y P(z)
:..B?tfiiting p = el P”

g

» We obtain

C v @, R4S
P (u +Pu + TpT u) =0,
which may be written
(1) Pu + '+ (g 4+ Aghu = 0
d ¢ du
or i (p-&x-) + (¢ + M)u =0,

170
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If we 1.0 use of the permanent notation
. . d ¢ du
[ = — T—
) Lie) = 7 (pd;r.) T
equatios 717 may bo written in the form.
(3) L{w) + aglu) = 0.
We use 1 move general boundary conditions, and for the, .
N 2\
gencrsl nicrval [ab:l: ; O
N
Rolu) = Aula) + Bu'(a) =0 & ’
(4) Ri(u) = Culd) + Dw'(®) = HON
where .. /2, (!, D are given constants, aiywhich A and B

4
are not Lot zero, and € and 1) are nétthoth zero.
Our o oblem then is to deterrhing all solutions of elass
C”of L}

Hiferential equation (3j'\ir‘h‘ich satisfy the boundary

condivions 4], O
For generalized batmndary problem we make the

$

hypothises: -

. "N

(i) P8 vj"}lass ¢, p = 0on [ab]
L\

'~~.:‘:(fa?ld g are of class C on [ab].
AN/

Thiu{}i) has two linearly independent &
i’\éfﬁb} u, and .. Any other solution of (1) of class

olutions of class

“~

2\ ,,\,C” is linearly expressible in terms of uy and !

\ )

w = (o + Catta

The boundary problem has the trivial solution ¥ = 0.

Fvery value of A for which our boundary problem has 8
non-trivial solution is called a characteristic cr{nstant and
those solutions of class €, non-trivial, which exist for these
values of A are called fundamental functions of the boundary
problem,

N
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1§72
To the hypothesis (H)) we add for the preseid ooseeond
hypothesis (H;) which will be dropped later-
(H:) N =04dsnot g characteristic constunt,
That is, L(u) = 0, Ry(u) = 0, Bifu) = ¢
has no solution of class € other than y == (). O

b) Green’s Formula.—From ouy hypothesis (27} v+ obtaig)
the following theorem: :\’;}\
Theorem 1,7 Jule) and v(z) are any two fe-:n..f_te‘.-s}\;u}in 2
of class C"', then O ¢
‘&

] S
(5) uL(y) — vi(y) = d%p(uv’ — va'ly)

Proof —Given two functions u(z), V(:I;);&"cluss 7, form
w pulD P 4 gu |
Vo pysH oy 4 gy j
_u ’:%)Zdu + p’u’
= V.‘:'.:‘p'f” 4 p.rvf
= pluy’’ — V'i‘.c',“) + p?(ﬁvr . vu’)

= TP — vl

ul(vy — vL{u) =

Corollary.—Jy % ‘&wy v oare of cass C' and L(x) = 0,
Liv) = @, then A\
A/
(6) x,si;p‘(zf:v’ — vu') = constant = Q,
¥ u andw(@re independent.
For 1{%‘ =0, then wv’ — vy — @ and
AN

N,

O u
}"hence &‘E({‘:) = 0,

and, therefore, v = ¢, and v and u would he linearly
dependent, contrary to hypothesis.

¢) Conseguences of Hypothesis (Hy).—We now establish
the following lemmag:

v’ —yy!

0.

fi



/RN

\‘.

\ce 80 that Ro(n) = ciRolus) + coRo{un) =

’ Ro(us) cannot hoth be zero. Therefore
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Lenions Lo—If 1, g are of class C” and Liuyy =0,
Liuz} —= 1, it 1w, w ave linearly independent, then
(1)), Rolus) are not both zero and also
00y, B1(u) are not both zero,

Prouof. --I'he general solution of class C" of L{u) = 0 is
u o= C ¥+ Calia
Now Rolw) = altea) + calRo(tta). <\)

Therefs:~, if the lemma is not true, then

a
< 3

”"\’\.’
Ri(w) = ciRalu) + 8231(\1{2), '
and, if o, r: are properly chosen, wé\@n make Bi(w) = 0.
But th- we would have v
Liw) =0, R(w)5 0, Rifu) = 0,
which iz contrary to hypot};’esis (H:). Therefore not both
Ry(ry, Jslwa) can vanishiat once. Likewise, we show that
Ri(u}, K.(us) cannet both vanish simultaneously.
Lemma 11— Thove exist functions ¥ and v of class €,
determined excé}xf\j"(}r  constant factor, such thal L(u} =1,
Ro(w) = 0, L) =0, Bilv) =0, u and v are E:mearly
indepenent Jand the constant faclors can be determined $0
that p(fpg'"— vu') = — 1. :
‘aof —Let i, ua be two lipearly independent solutions

Of’bf;ti-‘} = 0. Let w = ¢ty + CaMe and determine € and
3 0. Now Rn(ul)s

Bo{u) = 0 for every’c, ¢z
But,

N

¢y = pofte{us) and &2 = — pRaf1),
and hence
w o= po[ulRu(uz) — quo(ul)]-

e . ; shich
This is the most general expression for function u for whic

L{u) = 0, Ro(x) = 0.
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In like manner, we show that the most general o ptession
for a function v for which

L(v) = 0, Ri(v) = 0

is
VY =p [VIRI(V2) — Vle(Vl)J. N\
Suppose u and v were not independent, then \}
. :"\
V=Cu,C;£0, D
whence RS
Ra(w) = 2 Ry(v) = 0. &C

But by hypothesis Bolu) = 0. This igsh contrudiction
to our hypothesis (H3). \\\
According to Green’s formula,
p(uv’ — vy') = = 0;
hence the constant factors pg,v,;éi"ean be determined so that
v’ Jvu’) = — 1.

73. Construction OPS{Green’s Function.—Let ug take

between ¢ and & g fixad value 1: ¢ < ¢ < 4. Then the fol-
lowing theorem_hélds-

Theorem. IS For gy boundary problem there exists

under the asstaptions (Hy) and (H,) one and bus one function

K(z, 1), whitk, as @ function of z, has the Jollowing properiies:
o W

A){X”z'e continuous on [ab}.
M\:\}B‘) Ks of class C* on eqeh, of its subintervals {a.!:l !:tb],
Nnd L(K) = 0 on each subinierval,

C) Ro(K) = p, RBy(K) = 0.

D) Bt - 0) ~ Ke, 1 4 ) = ;3(17)'

where Kz, t) = é%K {z, [).

N
o
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This function K (z, £) is called Green’s funciion, belonging
to the bondary problem.

Prooi. 1 K(z, t) is to satisly L(K) = 0, it must be
linearly ¢ prossible in terms of the two functions » and v
the exisi-nee of which have been shown in Lemma II of

72:
A+ Bov, “at] (\\
Kz, t) = : O
Alu + Blv, [tb] “‘(“”S
Now dovunl that Kz, £) satisfy C): ‘::}\ '

Ruis = By(dow 4 Bov) = AoBo(w) £)Boke(v) = 0.
RoF = Ridw + Byv) = A;R!‘(‘@(}' BiR(v) = (0.
But F. - — 0, and not both &g), Ro(v) ean vanish
simulteronsly, whenee Bo = 0 Also, Ra(v) = 0, and not
both 1,in), Ri(v) can yahish simultaneously, whence

4, = 0. Therefore ,7}:‘“

.3

‘\\ {Aﬂu? [a‘]
&< K}(xr t) =
A a\ iBlv, [tb].

£ )
\/

D\ -
We nmv,ginposc the condition A}:

O Agu() = Biv(d),
e |
A Ay = pv(t), By = pult),

oW

\‘) AN
TPv(t)u(x),[az]

Kiz, ) =

u0)v(®), [sb]-

Now impose the condition D):

1
Kii—0 —-K(@+0 = 0
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that is
' ’ __ _1
PV () ~ pu()v'(t) 5ty
But pluv’ — x_ru,") = — 1.
Therefore p[v(t)u’(t)-—u(tJv’(t)J = P?U"
whence p=+1 L\
Therefore \\,

r h !
. = [ VOulz) = Ko(z, 8,0 < 5 < N
(7) -K($, t) = 1u(f)V(I} = Kl(x; t),ﬂ g z _i\g;
This is Green’s function and it is uniquely, détarimined.
Corollary —Green’s Junction is symme.{n’% That is
K@, ) = K, 2), (O
To show this, compute Kz, 25) agd:f{”(sg, 21} where
; g g < E‘gig E)
Kz, 2) :;.f{“ézé)u(gl),
for here we identify &, za:}fldfi.;‘, 2 and {; and, since 2, < 2y,
we use the first expressionfor K namely, K (i, 1). Stmilarly
{{éh}ﬁ) = u(ﬁ)"(%)-
A eomparison shows that
:‘1\ / K(""h 52) = K(zﬁ; 51);
that is, "\x'\ Kz, t) = K, 2).
74.0Eﬁ\i|ﬁ;alence Between the Boundary Problem and
a Hehtogeneous Linear Integral Equation. o) Hilbert's
Fundamentol Theorem—Under the assumptions (I7,),
N{s) let us consider the non-homogeneous lincar differential
equation

L{u) +1 =g,

where f is supposed to he continnous on {ab]. We can then

prove the following theorem ;

g
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Thearsn HIA— If F is of elass € and L(F) + 1 =0,
Ru(F 1, I(F)y = 0, then

Flz) = f bK(x, (L.

Frof-We have

LiFy = — fon {ab], and A o
- oA\
N\
ILiKy=0 on [at], [tb] separately. ™
RN
Muitipiv the first by — K and the last by tz""g.Q(L'add. We

abtait
(8) Fi.i#y — KL{F) = KF on ai ,{[?bjLseparately.

Apply Green's formula to the leﬁﬁ “hand side of (8). We
obtan »: ’

\ .

(9) (PK" RF) = KJf.

Integrate (9) from, a\% t and from { to b. We have

[p(mé\ KF") ]! - f Kz, Of(x)ds

[}J FK' — KF' )] f K(z, Of(x)dz.
t40

~\\
Ad%l‘ii( last two equations. We obtain
-0
A0 [p(ffK’ - KF’)] [p(FK' KF’)]
Q\” ro r="5
, + [p(FK’ - KF’)] = f Kz, Hf(z)dx,

Now p,Fi F’, and K

=0

since K(z, t) is continuous at = = {
arc continuous at © = L.
=0

Hence - KF’] = (.
(+0
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While
{0
P(FK’)J = plt — O)F(t — K"~ g
t+10
TP O FU b 0)

=p(£)F(t)[K’(t —0) = Kt +
which by D) " Oy

| ¢

l“)‘
Now write the second term in (1) as a (Icl'f_\rr,a;djfé.n';

, \\o
F(‘I) F!(G-) | \\::
PNk K R\
It A 5 0, then 'x:\\.,
A a0
PR r:u__ pla) AF(g) 4+§BP*’{fz} F'iug !
[p(PK F K)J T A (AR (@5F BK'(q) K ol |

Pla)] Ryky P (a)
4 | RWK) K'(a)

since o) 29, Ro(K) = o,
If 4 =0, then B -75{(1 and, as before,

, A9 ol Fla)  RyF) pla)
[pirs ] - K@  kuk)| p
Likewige ',"\':/:M[p(FK’ - KF’)J = ().

=5
() b
There@f' Ft) < /K(:c, Df(x)dx.

.’\ i
Wheﬁce, Interchanging » and ¢, on account of the symmetry
of K (z, ), we have
I“\) w4 &
Ny '@ ~ [k, o

Corollary —Jy F(z)is of clgss C"and Ry(Fy = 0, R,(F) = 0,
and f = — (g s then

(12) Flz) = f bK(x, £) [ — L(}f')]az.

B
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Equatin: il is an integral equation of the first kind, with
fas the iooetion to be determined. Equation (12) shows

us that -0 has a solution:
f= —LF)
b

Thecr:.~ ilIB.—If Flz) = f Kz, f()di, then F 15 of A
gleiss [ l—]~f—-0 Rufp) —-0 Rﬂ’};) = {). t“

Proe’ inorder to form the derivatives of F(z), we h(eak
the inie - ! into two parts, inasmuch as K’ is not, wnﬁnu—
ous for - - L "\

a3y o fh (z, 1)f ;)Jz+fK‘{.m)ﬁe)dc

f K/ (z, Hf{t)dt Jf\ KU z, Hf )t
*y K& o, r)ffx) olz, 2)f(x).

xy — Koz, xlx-aa , since K 1s continuaus.

But & s,
Therefor: A\

(14) Frizi = fj\\u:“t)f t)dt-{-fKn z, Hfihdt.

Frin %fK a, Df(AE + f Ko (x, Df(H)dt

& + K/, f(r) = K@ (@),

xo\;..; o . . -1
BU*\;“\{ Ky, z) — Kdtn @) = 50y
h'\éx fore

\‘?15) Frlixl = fIKl”(I, Dt + fﬂn (x, Df(t)dt
) . f@
" pl@)

\

Multiply (13), (14), (13) by (@), ' plz) Tespectively

and add. We get
r b (2
LiF) = fL{_Kl)f((bdt + fo_Ko)f(i)dt-—fu).
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But L(K)) = 0 and LK) = 0, therefore
(16) LiFy = — fia).
Now form Ry(F).

RolF) = AF{a) + BI

B
- f RUE D)t - 1,

i

since Ry(K,) = ¢, Similarly, we show that ;v o7 O

o

That #(z) is of class €7 follows from {13y,

[§74

I AL
if we substitute for Ko, K, their explici NP 0ns from
L &
(. N
We ecombine Theorems 1114 and TTT/NDNG e Ponwing,

which ig Hilbert’s thire fundamenty] xtllvﬁr(\m:
Theorem III.—7 f1(x) s Cortinuols/ then

b \
F@)=u/iK@xymw
vmplies and is tmplied by ‘Tf(ﬁ*il W of class )
LIy 41 =0, Ral#) = 0, and Ry(Fy = 0.

b) Equivalence of Bdwndary Problem and Integral Fqua-

tion.—If in Thoor;(_;(h;.\ﬂl we put
[B0= M@, Fe) < o (x)

we obtain the\theorem

Theorem V. ; [ u(z) is condinuous, then
xo\n'

¢ b
(1?")\§:\;~. u(z) = )\f K(a, t)g (E)ae(2)ls
%%memmmwuwwqmwm,
"‘\:Z'\;"’ L(u') + hgu, = 0, Rg(l&) = O} and _Rl(’u) = {).

/" Forxis constant ane by (H,) g is continuous, therefore the

hypothesis that f(z) is continy

We notice that (17) i5 4
equation of the second king
metric kernel:

(18) @, 1) = Rz, (0.

ous be(:omesu(x) is continuous.
homegencous linear integral
with, in general, an unsym-
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We remari Darther that the condition that u(z) be of clags

£ garrios +ith it the condition thatu(z) is of classC. Thus

we drop .- explicit statement that u(z) be eontinuous and

obtain frv: Theorem IV the two following theorems:
Theorem 1WA —The conditions

@) wiet is of class €7,
by i Eagu = 0, Ry(x) =0, Ryfu) =0 L\
tmply the . O

L 3

b ¥ 4 N
u(xr) = )\f Kz, Hg(t)ult)dt. ~‘ :

/N

Theor:v: {VB.—The condilions

a} i) i3 continuous. ’xi\\;

_ b A\

by o= [ K, Dptu R0
2'.??1?}Zy rf:ll ..f .’.’:2. N/

al vt s of class C:"{:’:‘

Bi Lot 4 agu = 0 Ru(w) = 0, Ri(u) = 0.
Theorems 1V A :mgl.‘i\"B establish the equivalence of the
boundary probl If\“a’tnd of the integral equation. Hence,

1) I Ao isPn characteristic constant of the boundary
problem, th@yX, 1s a characteristie constant of the integral
equation.antl rice versa. :

2} H\i'r) is & fundamental function for the boundary
pl‘,(l}%ﬂ‘f, belonging to A, then u(z) is & fundament.ﬁl func-
tign; belonging to Ay, for the integral equation and pice versa.

O We remark that for this particular kernel (18), the funda-
N/ mental functions are of class €',

75. Special Case g(x) = 1.—Tor the special case g2
the equivalence between the boundary problem and the
mtegral equation becomes:

CLiu) 4w = 0, Ro(w) = 0, Ralw) = 0
(19) ; implies and ;s implied by
‘ ulx) = )\f Kz, 1_)u(£)dﬁ.

[

y=1,
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The kernel of the integral equation in (19} Is now wym-
metric and thus the results of both the Fredholm: acdd the
Hilbert-Schmidt theory apply.

Let us state some of the results of the Hilbert-seionidt

theory: A
1) There exists at least one characteristic constant.
2) All of the characteristic constants are real. L\
3} The index ¢ = the multiplicity . O

4) There cxists a complete normalized (}3_-{};5J;‘f_s:1:.ai
{ O
system of fundamental functions {l,l'/,,(.’.ﬂ) ] with devioepond-
| J 9

| \
ing characteristic constants l[)\, j, p{@l, 2, .

5) If Z &(—x%'&@ is uniformly Qe’{l}ergent on 7, then

(20) > HEL Ok, .

LY
LR Y
e
N

6) If u(z) is expressiblelih the form

8 ]
uw@reh | Kz, Hude
v

and if u(z) is continuous, then

(21) N ulw) = 3 ),
PAY .
where\(},}é (u¢,), and the scrics is absolutely and uniformly
O
convergent on | ab |.
PR
'"\; “Far the speeial case under consideration, each of these
\ six statements can be made for the boundary problem on
account of the equivalence established.
Further results follow, for the kernel under considera-
tion, besides satisfying the conditions K{(z, £}, i3 continuous,
# 0, real, and symmetric of the Hilbert-Schmidt theory,
satisfies now, in addition, the four conditions 4) By ¢) D)
of §73.
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Theovem V.—There erists always an infinile number of
characicristie constants [)wl and a corresponding complele

norsmiized orthogonal system of fundamenlal funclions

{m:x} E

Prouf.- Suppose that there is a finite number of charaew .
teristie constants. Then there are a finite number\ bf
fundsmental functions: : %

viz), . . Pm(E) O\

)\1, e e e ,}m- ”‘:\\.
For ikese the bilincar formula (20) holds: But ,(z) is of
class ' on R and, therefore, K{z, ¢} souid be of class C”
on £, which contradlcts D), namely

1
Kz, i —0) -—K (23 ‘5+0) =
Theorem VI.-—If u(:z:) w of class ¢ and Rolu) = 0,
l(u) =0,
then \

\\ (@) = 20,¢/,<x)

where (7, +\(uq'/ ), and the series ts absolutely and uniformly
CONTEry Je'm:"
R?\—)' “_¥rom the corollary to Theorem ILIA

,\y."' ulz) = f Kz, z)[ L(u)]da:

V “But L(u) is continuous and, therefore, from @1
u(x) = 2 C().

Theorem VIIL—For every characteristic consiant » the

index g is unily: ¢ = 1. _
Proof —Suppose ¢ > 2, then at least three of the charac¢

he
teristic constants are equal, say, M = A = Ag. Let t
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corresponding  fundamental functions be ¢i(x), yain),
Ya(z). We would then have three different independent
solutions for A = X;, of the same integral equation, that 5,
by the equivalence theorem three different soluticns of the

same differential equation of the sccond order. Henece one | o
of them, say, ¢s, is linearly expressible in terms of ﬂwu

other two: \>

\./'.‘

¥i(@) = Oy + Cafo. RS

X
-
N
"

This is a contradiction. Therefore ¢ 2. ~
Suppose ¢ = 2. Then there would be two fun\i* mental
funetions ¢.(x), ¢:(z) belonging to A = Ap T\ow By

Green's formula, \\,
@) Bl - b <x>w<x)] SN
But w7

By(1) = Ay fa) + Bﬁq’(a) =0
Ro(ys) = Ay, (a} J‘“B‘P? (a) = 0.

These are two linear ]t\omug;encous cquations for the
determination of A4, B,{h}t both zero. Henee

mcahx (@) = pala)g'(a) =

which contradmtp (22), therefore ¢ = 2. Therofore we
have ¢ = 1.

We sh{ilmjw diseuss the more special boundary problem
inw hl(,( Tollows from the boundary conditions that

\ b

(2{})3 ’ [})uu’] =0,

3 o
For instance, if we have

wia) = 0, u(d) = 0, or ula) = 0, u'(h) =

or w'(e) =0, ud) =0, or w'la) = 0, w'(d) = 0,
equation (23) is satisfied.

For this more special boundary problem we have the
theorem:;



§750 A PPLICATIONS. HILBERT-SCHMIDT THEORY 185

fTheorem VIIL—If, as a consequence of the boundary

eonctiiiong, we have
1\

smallest

then  here  exisfs &
largest

] chamctemsf.w comtant tf A

U)" i []f ,.\ 4
Praef. ~The assumptions p(z) >0, pla) <Q) are in
hamnony with our previous assumptlon that, pr) # ( on

] \ m\‘
[rh i, for then p(x) is always of the same slgn We have

4

previsusly shown that there are an\mﬁmte pumber of
characteristic constants, but, so fa.i' ds we know, at present
they may be infinite in number n both the positive and
negative directions. Let vy (%) be a fundamental function

helonging to A, then J{"“”
21) L(m + 28 =0

¥, is of cluss CN and ¥, # 0. Multiply both members of
(24) by ¥ end integrate. We obtain

's\l

b
(25):‘.\*& A= - f ¥, ()L, )dx

o/

studo
Y b
7\ .
P [vti =

In (25) put the explicit expression for L(¢,)-

)\ f I:’{/vd (p'p?!) + q‘:& ]dx’
or f%-(pw ’)dx-l-f( ¥y

We bhave
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Integrate the first integral by parts. We find

5 b i )
A, = — [P%%’] + f e, %dx + f (— o)z

Now — ¢ is a continuous function on [abj’ and henes 13\{
finite maximum A and a finite minimuin N .
O\
m_ﬁ_—qgﬂion{abJ. O

N/

Therefore B!

i # {"
LS f P, *dx + M, agd\\

P
A 2 f . dx + m
{ a ’\ &

If p >0o0n [ab] then the mtegral in {28} is 2 positive

(26)

™

number and therefore X, >~ m

If p <0on [ab] then'the integrand in (26) is a negative

number and therofc{fe A < M.

Combining these’results with the fact that a finite intarval

can contain only*a finite number of the »,’s, we obtain the
result: “.‘

Wheny ﬁ(x) > 0, the characteristic constants can be
arrange}i 1 & sequence increasing towards plus infinity:

i) > 0; M<hM<h< . | < <.

A ahd when p(z) < 0, they may be arranged in a sequence
./ decreasing towards minss Infinity

PR <M >N >a > L >N >
Corollary —If px) > 0and g £ 0on [abJ, then all of the
characteristic constants are positive; if p(x) < 0 and q20

n [ ab |, then all of the characleristic constants are negaiive.
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Tor if —g 20, then m 2 0, so that, from (26), since
p > owe geb

m 4 (a positive quantity) < X,.

Therefore A, >0
1t -y < 0, then M £ 0, so that, from (26), since < 0,
wWo oo bt 111' A
< M 4+ (a negative quantity not zgro) ) "\’g\.
Thereinn A, < 0. A\
Desinition—A real symmetric kernel K(z, t) i saad fo be

closed if there exists no continuous funclion k{}\) other than
h(xy = 0, for which

f Kz, Oh(t)dt = (

Theorem IX.—Green's functwﬂ K («’c t) for our boundary
problom is always closed.  OW
Proagf—We make use, of “Hilbert’s third fundamental
theorem, which states the equivalence of the boundary
problem and the hqgmogeneous linear integral equation:
I fix) s con%{lous then
o0 F@ = f K(z, 0f0)dt

mlrlwa a\d is zmplwd by F(x) is of dlass C,
\~ LF) + f = 0, Ry(F) = 0, and B:(F) = 0-

"Wé apply this theorem for F(z) = 0, whence if f(z) 1s con-
Winuous and :

bK(:v Of@dt = 0, (2},

then "= Lo =0

a) The General Case (%)
we considered the special
r the problem for glzx) # L.
cads:

76. Miscellaneous Remarks,
# 1.—-In the previous article
case g{x} = 1. We now conside
Hilbert’s third fundamental theorem now I
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If u(z) is continuous, then

ulz) = J\fbK(x, Bglthult)dl

tmplies and is implied by u(z) s of class O,
L{u) + Mu = 0, Ro(u) = 0, Bifu) = 0, O

There are two cases to be considered: L)\’
) AN
Case I—y(z) 0 on [ab]. This case can le rqt_?u}ar-{i to
. N
the case g(z) = 1. Since g(z) # 0 on [ab], Q’c{,havu gither

W

g{z} > 0 or g(z) <0 on [abJ. COH{)el‘ the fira! case,

Multiply both sides of \‘
(27) uf{z) = )\f K(st: t)q(t)u(t)dﬁ
by +/g(), and put ~" .

u(z) = \/g(x) u(z).
K@ 8= K@, D/ g@n/ g 1)
We then obtam\\"

(28) ’\.:;,u(x) - f K(z, Hadt.

This is the teduction desired, for K(z, ) is symmetrie.
IPQ;(x) <0 on [ab}, multiply both sides of (27) by
Q;F: 9{z), and put

QO Uz) = /9@ ula).

K(z, t) = K(z, 1)/ — (@i = g0
We obtain

b .
i(z) = — f Kz, Da)de,

which is again the reduction desired.
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Cotne 1 —g{x) vanishes al some point of [ab]. This case

has bLoeo treated by Hilbert ["Gott. Nach.,” 5, p. 462,

]
1906 | Sor [unctions K{z, {) which are definife, by mecans of
|

the 1heniv of quadratic forms with infinitely many vari-

oA\
ables. [ MMty [Comptes Rendus, vol. 150, p. 5X5;:I~Egi3.",~
p. Gl iﬂlt)] has reached the same results with{iﬁﬁ the use
? '\..
of quudratic forms of infinitely many variabt‘t‘%
Drfiscition, -A real symmelrict kernel K& 1) is said o be

definste (7 no continuous function exists] oiler than h{z) =0,
&

for whici ¢ ‘\
N b ¢ ~ \ ¥ 4
f f Kz, Hh{g)h{t)dzdl = 0.

The rume “definite” ha;é;:’:‘t:‘)ecn uged on account of the
analogy with a deﬁ"{zyité' 'ciuadratic form EKejy‘;?j; which
vanishes only whemall of the y's vanish.

Intesral equ:N-\ioﬁ% of the form

@9 L@ = f@) f Kz, Deluldit

“"ith:"f;“f}f: t) definite have been called by Hilbt?rt pf)lar
ingegval cquations or integral equations of the third kind.

e multiply the equation (29) by g(x) and put
A

O

Flw) = fl)gle)
K(x: t) = K(Zr 5)9(55)9(;);

we obtain the equation in the form in whie
sidered it;

b N
g(x)u{z) = flz) + 2 f Kz, thu()dh

al kernels consult LALESCO,

h Hilbert con-

! For a discussion of this and other gp?ci
'T., “Théorie Des Bquations Intégrales,” pp- B4f.
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Definition—A kernel H(x, 8) 4s said to be synenelrizable
if there exisis g definite symmetric kernel G{x, 1} snoh that
etther

b
Ki(z, t) =fG’(.?:, ML (s, s

or

b
Koz, D =f H(x, $)G(s, ds

8 symmelrical. ,u:S
In this instance the kernel

Az, 1) = Kz, )gle)
is symmetrizable if Kz, 1) is deﬁnitg,j»ﬁﬁf

b -
&olo ) = [ Kie, §EDK (s, 05

Y

4
L &
W\
’

LR
¢’¢;

is symmetric, sinco

#}:.;w
Kt z) = ﬁJ;K’(t, $)g(s)K (s, z)ds

b
‘=\"\f Kis, Dg(s)K (z, )ds
pN \ = Kg(x, 5)
For symmetfizable kerns Marty has sho wn that

1) Tl\ézré exists at least one characteristic constant.
]{l’}ﬂ of the characteristie constants are real.
b) n-komogeneous Boundary Problems—We next con-

sigc;":\the non-homogeneoys boundary problem:
AN
‘\'"\;w' Llu) + 2gu 4 = 0,  Ryu) =0, Bi(u} = 0,

where r is a given function of z, continuous on [ab], and

By(u), Bi(u) are defined by {4).
We are going to show that the boundary problem is
, €duivalent to a non-homogeneoys integral equation. To do
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thiz we again make use of Hilbert’s third fundamental
theoren: Qo

f=xu+rt =u
Sinee », v, r are continuous by hypothesis, this theorem now
reads: it #{x) is continuous, then the ¢combined statement
wis of cluss €7, L) 4 Au 4+ 7 = 0, Ry(w) = 0, Riu) = 0°K°
is eqinvalent to the statement that O\

.'\

wis) — fhf\'[a.‘, t)[)\g(t)u(.{) + r{t) ]dt A N/

£ N
< 3

o b Y, \ R
N [ Kz, Dg(tyu(t)dt + f Kz, Qg(&)df-

Henee we have the theorem; \

. T r \" bl .
Theorsm X.—The non-_homageneow\s*ﬁ)oundary problem:
Lo 4+ xu+ 1 =0, R@X 30, Ri(u) =0
with th Turther condition that u-,(;c)' % of class C", is equivalent

to the won-homogeneous inlegrah equation

N W)
utw) = 1) B [ Kee, et
K b
where 1:(r) i3 condbuhious and f{x) = f Kz, {yr(t)dd,
&

¢) The Exetptional Case x = 0 Is a Characteristic Con-
stant.— AN @b The preceding developments have been n:fat%e
under tigNiypothesis (Hz) that X = Oisnota charaf:tenstm
congtgni”of the boundary problem. This hypothesis, hf)w-
EVET, is not satisfied in certain problems of mathemafical

Dhysics.  For example, the following boundary problem
Cin the theory of heat:

U Nu =0, wa) = 0, W) =0
ix? .

hag the non-trivial solution w = constant for_l = 0'. "
The excepfional ease in which the hypothesis (}?2) 1sdn0
satisfied can be treated, according to Hilbert,l.by intreduc-
ing a modified Green’s function.
18ee Hipgnr, “ Gott. Nach.,” p. 213, 1904,
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In most cases, however, the following simpie artifice,
due to Kneser will be sufficient,

Let us replace the assumption (H,) by the much inilder
assumption (H,'):

(Hy') There exists at least one value ¢ of N which v not g 7\
charaeteristic constani for the boundary problem.

Let us write the differential equation .\“>'
O
d{ du A ™
(_i:i:(p(?x) + g +ru=0 R N
in the form 'm"\*'
af du v
d—x(?’az) + [Q’ +eg+ (x— C)?l\%“z 0
df du) . . &5
or éﬁ(pd_x) + (¢ + hg):uj? 0,
where q=g+ cg, )TQ:-—.’{X — e

Then A = 0 is certainly not,}ja:': ;characteristic constant of
the boundary problem )

d{ du IR A
HCARC FEDU = 0, Rufw) = 0, Riw) = o,
since, by hypotl.ufsii.s (H,"), the boundary problem
df duy\&
de\Paz oF qu + egu = 0, Bo(u) = 0, By(w) = 0
Y
has nossblmiion other than 4 = @,

J\I;"ygppLxcaTrons T0 SoME PROBLEMS 0F THE CALCULUS
\‘; OF VARIATIONS

77. Some Auxiliary Theorems of the Calculus of Varia-
tions. a) Formulation of the Simplest Type of Problem.—
For the simplest type of problems of the caleulus of varia-
tions we have given

1) Two points Po(zy, yo), Pilz:, y).

2) A function F (®, ¥, ¥’} of three independent variables.
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Reguiwl: Lo find among all curves

(30) y = y(z)

joining 12, and Py that one which furnishes for the definite
integral

ri N\
s ,w[ @ ]dL ) = Ly
ﬂ 5, 4@, ¥ @) |in, | G dw] o

N\
the smatioed value, O

Cones mng the admissible curves (30) we makb\ the as-
summiticn that they satisfy the following canﬂigons
Ao .a‘} of class C*. O
By i) = g @) = v O

We nzsume that the functiond F\IS of class €' for all
systems of values 2, y(z), ¥ (x) fuwnished by alt of the admis-
sible enrves &N

bl Euler's Dgf}'e; ential Eqnazwn —Suppose we have found
the misimizing curve <

Cly: ,.‘{\ y = fz).

We replace 1t :'a neighboring admissible curve of the
Bpeuh 11 for m »

. \) y = flz) + en(x},

o,o

“L\, 45 1 small constant and n{z) a function of £ satisfying
faveonditions:

(31)

\”," A’) 7{z) is of class ¢,
O (32)

B mlxp} = 0, g{z) = 0.
Since €'y minimizes the iptegral, we have

./h [ e f Al ]dx fF [z,f, ]dz,

which we shall write in the form
I(e) 2 I0).
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Considered as & function of ¢, {(e) has, thercfore, a minimum
for € = 0 and hence
10y = 0, I'"(0) 2 0.
L4
These are necessary  conditions for a minimum, | t I8
customary to write O
81 = eI'(0), BL=eI"0), () Oy

and to eall 67, 521 the first and second variation res;géx;i?fwly.
We first consider the condition 'ty = 0. By detinition

I{e)= f F [x, ¥yt+oe,y + eq.’]:}i;:;

whence, by the rules for diﬂ'erentiatipg\ai definite integral

with respect to a parameter, RS

(33) ' = f [F*,m + Fw:’}*] dz, (9)

where the dagh indi(tate§}fﬁét we use the arguments,
z, [(@) + enl2), f'(z) + efifx). Therefore

') =f (F,m + Fy’n’) dz, (n)

the arguments ‘n& being x, f(z), ().t

An integragion by parts gives
X/

, 1 :: i & d
L )
d

,
A\ -
O\
2./;; “(F = ) 4, (o)

a\ on'account of (32},

" But I'(0) = q, and, hence, by the fundamental theorem
of the ealeulys of variations, 2

a ..
(34) F, - Ex-l‘yr = (.
! Consult Bovrza, “Lectures op the Calealus of Variations,” pp.
1afF, University of Chicago Press, 1904,
* See Bovza, “Lectures on the Caleulus of Variations,” §5.



s%of the first, sccond, and third or

7" )
’\\ N/
\ 3

$77] 3 UPLICATIONS. HILBERT-SCHMIDT THEORY 195

This i.s:._ 1 differential equation of the second order for the
deternvration of y = f{z), It is the first necessary con-

ditionn =il 15 known as Euler’s equation. Ifs solution
involv.' twe  arbitrary constants which have to be
determined by the two conditions (31).
From. (33) we get
e :[ (F:;r,f"?2 + 2F,m’ + Fy’v"‘?m) dz, "\:\.
wheno \ O

LA —f (Fyvﬂ‘z + 2F ' + Fw'y'ﬂ@:dx! (T")

¢) Fuies’s Rule for Isoperimetric I’robleﬁé.—-For'isODGﬁ'
me.\.trit: problems the admissible cutves are subjeet o 2
third condition € in addition to A’))nd B):

C: f G[z, y{x), yf’(?c)]? 1, a constant.
The problem is, then,.ﬁ'(;’:d'etermine, among atl curves
&Yy =y

satislying Lhe\i\(imﬁitions A) B) C), that one which will
furnizh the gmallest value for the integral

3 3

ROFORY [ R

N e
Theveonditions on G are the
Gate continuous and possess conti

same as those on F, viz., F and
nuous partial derivatives
der in the region under

tonsideration. Put
H =F +2G,

Then, by Euler’s rule, the first

A an arbitrary constant. e
same as if it were

necessary condition for a minimum is the
required to minimize the integral

f Hz, y, ¥')dx
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with respect to the totality of curves satisfying the condi-
tiong 4) and B}, that is,

H, - iy =,
or, more explicitly, N
Fy =26, ~ 27, —26,) = o. O

N
The solution of this equation involves three albltmrg COT-
stants {e, 8, A) which are to be determined by {the three

conditions B) and ). \
78. Dirichlet's Problem.—We now prnpoqe to minimizse
the integral \\,

(35) D(w) = f [p((j:) S\ ]d:c

with respect to the totality M, o’fcurves satisfying the condi-
tions '~.

[u is of class C”: u(a) = 0, u(p) =

(36) l R \f *e)dp = 1,

+8J

- 4 a

with the further\h pothese%

:‘\"p > 0, p of class C’] on {ab:]

\'\ “‘ ¢ continuous

Hllkk;t to whom the following developments are due, calls
thzs problem Dirichlet’s problem. The problem is an iso-
“pérlmotncal problem of the type eonsidercd in §f7 with

\ F_pu

Henece

— qut, G =

Hz, u, vy = pu't — (g + Nu?

and, therefore, Buler's differential equation for /7 is

., i i
Hu - d_xIIu = __2(‘1 +__7\)u —_ %(2;!1&) = 0.
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¥ \"T }. [N
d ( i')
dx ( ) ’

which may be written

(37) Liw) + ™ = 0.

Tovery solution of this problem must satisfy this equationiJ
sl the conditions (36). Now (36) and (37) COBStit“t;e\”\’l
bonndary problem of the type previously discussed in yellich

A

T
4

h
glz) =1, [puu’] ~0, Loy

a

Hence the Theorems I t0 IX hold. v

We can, therefore, state ab once that this problem (36),
(37) has no solutions except when }\,‘is’a characteristic con-
stant. We know that \V

1) The characteristic cqn’gﬁaﬁﬁs are real.
2) The characteristic;éﬁnstants are infinite in number.

3) For each chaligefeﬁstic constant the index g = L.
Therefore the \'s qg{ﬂiatincﬁ, and, sinee 2 > 0, we have, by
Theorem VIIEg ¢\

(38) M <A <A<
with a_ eof}r@s}onding complete set,

DT @), @ h@ -

uo,f'\lormalized orthogonal fundamental func
A0 We have, then, for » = 1,2 . - -

AN

tions of class

\V L(gs) 4 M¥n = 0,
'pﬂ(a) - Os ‘lt’n(b) = 0:
B
(39) f go(z)ds = 1.

1f, then, Dirichlet’s problem has 2 solution, it must be of the

form
u = C;!/,.(Z), A= DM
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But from (36) we obtain

b
sz vul{z)dr = 1.

Comparing with (39) we find that ¢ = +1. The only
possible solutions, therefore, -are N\
u = 4 Ipﬂ(I)t A= kﬂ- ~ft\‘:\..
But in the proof of Theorem VIII we showed that O
b 3
A =_/- {(p¥n"? — q¥n*idr. .".( 3
A D
Therefore \::'}\

An = D(+ ¢.), by (35). \
Henee, it follows from (38) that \‘\\
Dit ) <Dt g}, (n 2903, . . ),
Hence we infer that: I there :eg;’z};téz'at all a funclion wiich
minimizes D(u) with respect to2he totality M of all admissible
curves, ¢ must be the Sunction,™
~Q = =+ ¢i(x)

and X must have the talue x,.

b) Su_ﬁiciency)"%of. a) Transformation of D(u).—By
an integratiog By parts we obtain

AN/ 3 b
) d du
p Nu'dr = ' _ = Ve,
* é}s’\&au)u T = upy ]a -[ Us (p dx)d"r
N ’
But &, upu’] = 0, since u(a) = 0, u(h) = 0.
AN a
Therefore
O

/ D) El-b[p(j_:)z . qu2]dx
- [ G5 + ol

Diu) = —fbuL(u)dx.

Therefore



§7h1 APPLICATIONS. HILBERT-SCHM1IDT THEORY 199

Tt us put

L) = wlz).

Then w is oontinuous and we have

b
D(u) = +f u(zie{z)de.

We now apply Hilbert’s third fundamental ’Lheo{&(m

whenee from O
w is of clags €7, L(u) + w = 0, ule) = 0, wib =0
(&
it follows that \C‘\

wlx) = fK r, f)w }Q\b

Multiply both members of this chmtlon by wiz) and infe-
grate. We obtain ,j \

AN
s‘s

{40) Diu) —ffK(x, w(t)w(z)dtde.

f the Expansion Theorem: —From Corol-

3) Applicatigns\g
lary II to The(};egn XVII of §68, we have

Qﬁa: fK(:c, He(t)dt = ZE%—) ¥, (x),

ﬂ%cnos being absolutely and uniformly convergent.

Let us put
'“\ 4 ¢, = (e, constant,
\/ then
) Cv
(41) u(m) = Dy ¥l
y=1""
Form

wiiz) = z—fmw ().

A
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o

This series is also absolutely and uniformly comyvere zent.
We obtair, therefore,

f wHw)de = Z- . f Yo, ()dx =

But f ¥, (20, (x)de = {0, i‘ ~ : O
Thercfore {E\ “
(42) 2)\ ”2 = 1. .“::}"ﬂ.

- R
We now apply Corollary 111 to Theorem XYW bl $68, 1o the
donble integral in (40). We obtain \>

r.'.

D) = (wvb ) i\l"

v} Computation of D(u) Dﬁ+ :,h) ~—Let us now copi-
pute the difference R \\d

Diu)y — D(—Px{a) = D{u) — a.
On account of (42)

\ =, k3
X
Therefore S - '
N C,? 2
A\ D(“)‘)'ZZx _27« 2
A i
A\ .,
AN — qu( — Ay 20,
Q.“ c,? T
ince )\—Egﬂand)\—}n>0f01r_:2.

[

Therefore we have
D) — D+ ¥1) 2 0.
The equality holds only if
C,=Oforp=2,3, c ., 0,
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it in this event from (42) we obtain €y = + X\, whence
from (A1), u(z)= % ¢i{z). Therefore, whenever u(x) #
i), it results that

D@) = D(% ¥a(x)) 2 0.

"hus we have proved the following theorem:
Theorem XI.—u = + Yi{2) furnishes for

b : )
ALC R

i simaller value (viz., \5) than any other funf:t?dn satisfying
the conditions NN

O
w is of class 7, wla) = 0, u(b) =Q\f wx)drs = 1.

&) Dropping the Assumption.(‘ﬁ?).—The results for the
Dirichlet problem scem to presuppose (H). that is, that
* = { 15 not a character{sﬁﬂ: constant of the boundary
problem . X
L) +Au = 0, ula) = 0,u(®) =0,

.

but they are,h{ﬂeg}endent of this assumption.
’?'oof.ﬂ-aJ\We notice first that the assumption, A = 0
is not a~ebaracteristic constant, Was NeCessary for the
constratiion of a Green’s function. But the Green's
fur;c\’c'i}ﬁ' did not oceur in the proof of Theorem VIII. In
%v‘bheorém, we made the special assumption thab
(]

\" Ro(u) = 0, Ri(u) =0, imply [puur] = 0.

Let theﬁ ')\'o;b:e aﬁy ché,racteri:stid constant of the boundary
problem: . ) _ |
(43) LG+ =0, Rew) = 0, Balw) =0

. . normalized fundamental function

and ¢q(zx) 8 corresponding
of the boundary problem: -
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Yo of class C", L(¢q) + Ao = 0, Rylo) = 0, Ri(ipy) = 0,

b
f Poi(xdde = 1
o
b

Henee we derived, since [P'f/u%’] 0, without using the

3

Green’s function, that is, independently of {H3) the cau fw 3
ke Y

Ay = f (o' — ol = D) ‘ \\a )

Henee followed from the corollary to Theomm \II[ that
p >0, £0,imply Ag > 0.8 \

that is, all of the characteristic constants ef the boundsry
problem are greater than zero. Thug ‘the hypothesis 7/7,)
is satisfied and the Theorems V to Y1l certainly hold.

£} Buppose now that the cond:tmn ¢ £ 0is not salisfied,

Denote, as before, by m the zrurumum of —gon [r;bJ that s,

S

q S £ 0.
Then the dlﬁ'erenmz%{ bquatlon

L(w) +\u LG 4 @+ 0w =0

becomes \ )

“x}"' o dy du - o
‘\EQ'\;L(u) + Ay = d—x(pg-x) +qu+ =20

th{f&\
."\' g+m=gandA —m = X

W

\ Binee p > 0, . < 0, the Theorems V to VIII hold for the
houndary problem

(44) L(u) + M = 0, Ro(u) = 0, Ry(u) = 0.

In particular, it has a single infinitude of real, distinct
characteristic constants:

0 <X <A <is < .
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with emresponding normalized fundamental functions

gi(z), Yalx), dalz) - - -
But sinee

L{u) = L{u} + mu

it follows that, if he ls & characteristic constant and ¥s(@) N
4 furcdamental funetion for {43), then hg = Mo — ™ igxa\.
clsracteristic constant and $o(x) the gorresponding fl.klj‘laa-
menial function for (44), and vice verse. A

Tlence also the houndary probiem (43) has anfinfinitude
of real, distinct characteristic constants formifiglan inereas-
ing sequence: \%

A= N Fomy ke = e - ??l,\\“ ,

A0

M < he <A SO
with the corresponding norms;]}iz’ed orthogonal fundamental
funections ¢1(z), ¥2(2), - ~~ N
~} Consider now the problem
D(t{)"  minimum on (M)

This problem i{févfdently equivalent to
Duw)(=E D(u) —m = minimum on (M), &€

£ b”‘ 2
D e duy® 2jld:r — minimum on (M).
D(u)\”\f [p(dm) (g +m)
b\"&‘(‘q + m £ 0, our former results hotd and

»\ u = + ¥ailx)

<\: * furnishes the minimum for D(w), that s,
ﬁ[i ';’1(17)] = A

ce of the two problens, the same

On aceount of the equivalen
hes the minimum for D{u) and

function w = £ ¥1{®) furnis

D(ﬂi)=ﬁ(wo+m=il+m=x1.



\
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But by 8) M =X+ m is the smallest churneteristio
constant for the boundary problem
L{u) +xu =0, u(a) = 0, u(h) =

This shows that Theorem X1 is true also when the nseu: mp-
tion (H;) is not satisfied, Q|

79. Applications to the Second Variation.— Hilh: N
made an application of the preceding result to the {]I'\U :.lc'm
of the second variation for the simplest type ni iaiion
problem considered in §77. )

a) Reduction of the Problem.—The pr'oblggi{‘ié to ﬁmi the
condition under which

T1 : A\,
(#5) f (}ﬁvu’?ﬁ + 2F, o’ + F“'{x&}i’g) e 20

for all functions #(x) satisfying he conditions

A") n(z) is of class ¢S
B') qlzy) = 0, n(Z 50,

The arguments of F 0NV, F ..+ are x,y = flz),y = fx)
where f(z) is a so]m\on of Euler’s differential cquation {34)
satisfying the )Q‘Nlal conditions. We adopt the notaiion

Fyy [—": f(rt) f’(fc)} =Pz}, F [95, Jiz), f’fx)} = (z),
N
Fy’a’\:[}fff(x), f’(rJ] = R(x)
T‘hen {45) becomes
(46) f [P?;z + 2@y’ +- Rn’E:‘dx 20, (n).

It is easily shown! that a first necessary condition for the

inequality (46) is that B = 0 on [ab], which is Legendre’s
condition.

! Compare BoLzs, “Lectures on the Caleulus of Variations,” §11.
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We suppose this condition to be satigfied in the stronger
formu I > O on | ab |

We now transform the integral by integrating the seeond
term by parts

L1 1 . ‘,‘\
f 2Quy'dz = f Q—d’- ptdz
£a F d.’.!: A s
Tt 'zt f'\..“\
nf‘] - f wQdr O
ZD ] . \}

' 4

£33 R S
_ ,qufdx' ,
PRI

N’

1

Therefore (45} b
erefore (45) becomes N

L 91 2'.\
jﬂ[G’~Q%f+Ih§Ff20Aﬂ.

If for 7y Lo, L1y, R,“P-— o

we put u, &, b;..p, — 4

then the above ineqqgliﬁg’f' becomes
& pw 2o

for the tota.]ity\&* 0} oli functions w satisfying the conditions
1.;,~1:s of class ¢, u(a) = 0, u(b) = 0.
N
b) Cenwection with Dirichlet's Problem—We now show
th e"(}ﬁivalence of the two statements
o) D(u) 2 0, for all curves of class N, and

'..\‘f{'z;g) D(u) 2 0, for all eurves of class M.

o\

\ }

A) The class of curves M is contained within the class

N and henece -
D{uw) 2 0, {N) implies Dlu) 2 0, (M)

B) Suppose 1 # 0 belongs to the class (¥). Censtruct

u; = pu such that
b
f uig dr = 1.



N
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Then w; belongs to M, for u, is of class € and wilid = 0,
ui{h) = 0, since u(e) = 0, () = 0 and by con<irueiion

b
f?:L"’dx =1,

Therefore D{uy) 20, N\
But D(ui) = D{pu) = p2D{u). O\
Therefore D) = 0. o\

Hence, if % belongs to the clags (N)and u = 0, th(‘.\ﬁ«:f}(u.} >
0, while if = 0 also D(u) = 0. Thereforg,/dF . helongs
to (N), then D(u) 2 0. %)

The equivalence between the two incquaﬂities (47} and
{(48) being established, we can now 7ZApply the results of
§78: o\

* The smallest value which D(u\edn take in M is ), and
this value is furnished by & + ¢,(x) and by no other
funetion of M, Ny

Henee if .

1) M > 0, then D) > 0 (M),

2) =0, then®{u) > 0 (7).

except \'N;@sﬁ"u = =+ ¢4(x), in which ease Dy = 0.

3) M < O then D(w) can be made negative in M.
Hence, X3X0'3s the neeessary and sufficient eondition that
D(u) 2 @¥or all curves of the class M and therefore also the
neceiai}y and sufficient condition that D{u} 2 0 for all
curges of the clags N,
SRéturning now to the notation of the caleulus of varia-
tions, we have the theorem :

Theorem XIL—Suppose R > 0 and lef N denote the
smallesi characteristic consiant of the boundary problem

d s du
W Bg) ~ @@= ula) = 0, ulz)) = 0,

then Ny Z 0 iy the necessary and sufficient condition hal
& 20, (5).
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80. Connection with Jacobi’s Condition. a) Sturm’s
Oscillation Theorem.~1t is a priori clear that the condition
M 2 0 must be equivalent to Jacobi’s condition.! The
connection between: the two can be established by means
of Sturm’s oseillation theorem,

Since the differential equation O\
Oy
'S
has no singularities on [ab]: there cxists one aﬁnﬁ’zmly one

l'\.

Liwy+xu=0

/N

solution for which N\

= fa) =
u(a) = 0, w'(a) xl\\?
Let us eall this v = V{z, A), so th?,t:\"

Via,\) = 0, K'a)») = 1.

Any other solution u(z), {Q‘@f’éﬁhich u(a) = 0, is then of the
form N\
Lu = CVix, \).

.
£ 3

Now the bound{i\;}"f}roblem
A+ w = 0, ula) = 0, u() = 0
AW

has forajk(‘—“ A1 a solution # = ¢ (z), for which

}"\'s.
AN vila) = 0, ga(b) = O.
Ii\
Jence
~O Uilz) = C-V(z, )

N and, therefore,
Vie, a) =0, Vb, M) = 0.

Let us designate by &) the root of V{z, \) next greater
than a. Then Sturm’s oscillation theorem states? that

1 f. Borza, ‘‘Lectures,” §16.
* See Bécuer, Bull. Am, Math. Soe., 4, 1808,
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1) as X increases, £(A) decreases
(49)  as X deereases, £(\) increases
2) V(z, M) # 0 between ¢ and b and, therefore,

En) = b
b) The Conjugate Point—Consider the solution N
u =V, O KoY
and put a’ = §(0). O

Case I.—\, > 0. Then, by (49), as A <1g~.{;§(~.“:‘;§~:v:~; from
A to 0, £(N\) increases from £(\,) = b to (0] = o’ and,
therefore, o’ > &, QS

e AN

™S Fra. 10

Case IT.—\, '——,:O“S\Then a’ = b.

Case IHr—)\*;\X 0. Then, by (49}, as » increases from
A to 0, E(})‘}iecreases from ¢(2) = b to £0) = &’ and,
t-herefore} A< b,

Let l}f}lléw return to the notation of the caleulus of varia-

tions{that is
S

N\ i du
i o L
"\?;Om a, b, s (p d:r.) + qu
o 4 E“) - Y
Tor E1, o (R I (P — .

Then w = V(x, 0) is defincd as that integral of Jacobi's
differential equation

df_ du ,
&x(Rdi) —(P-—@QHhu=0
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which aatisfies the initial conditions.
ulzg) = 0, w'(xo) =

Henece ¥z, 0) is, up to a constant factor, identical with the
funetion denoted in the ealculus of variations by A(z, 20)
and, therefore, o' 1s identical with 24/, the ahsecissa of the A~

point conjugate to xo.
This establishes the equivalence between Ililbert’s tim(h—

Lion X \3
)1 2 0 “\'\}S
and Jacobi's condition ' m'\‘
ES 1 g zy \ v
for a non-negative sign of 5. \x ’:\

s‘o

I11. VlBRA*rm\ \PROBLEMS

81. Vibrating String. @) deuctwn {o Boundary Problem.

For the homogencous stvrmg we had
N _ C2 o @

(50) | Q’\ = O £ \
{51 7](0\\0 =0, 7(1, ) =0, () T'a. 20.
(52) _ ohl, 0) = fla), mde, 0) = Fla), (@)
where \ )
o) f(U) =0, f1) =
\\\ | Flo) = 0, F(1) = 0.
¢ \V(" was a real positive constant and
~\J )
3 Cc* = —I, where

R

P = pormal tension, x = density, o = area of cross-section.
The differential cquation (50} also helds! when k, o are
given functions of x, Z.e., the string is non-homogeneous.
(* is then an always positive, given funetion of z.
1 See WEBER, «Differentialgleichungen,” vol, 2, p. 20L.
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We try for a solution of the form
7 = u(z) ${t).
Substitution of this expression for 4 in (50} gives
u(Z)¢" (1) = Cu'(x) (1)

whence \
¢"t) _ Cu'(z), Oy
@(t) ulz) \“\,

But the left-hand member is a function of ¢ alone{fhe right-
hand member is 2 function of  alone; they argz(‘:g}ua'l, hence
equal to the same constant, say —A. Weare thus led to
two ordinary differcntial equations: v

du A _ xt)\\;
(53) T T AC
with the boundary conditions .
(54) w(0) = Opall) = o,
and N
3 a7
5 < U =

by The Bound{@/PmbIem.m—The problem (53) (54) is of
the type

L)+ My = 0 ,
i"\x Ro(u) = 0, Ry(u) = 0, with [pu-u’] =0

(L

(56)
I\ '
W[tﬁp = 1,(}’50,9’ =i';_2 >0on [abJ
...\."o
)" We shall show first that every characteristic constant of
(56} is positive if
(57) 2>0,¢£0,9 >0,

Let o be a characteristic constant and (r) a correspond-
ing fundamental function of (86):

vo(z) of class C”, w(z) = 0,
L(‘PO) -+ Aogerg = 1 Ro(fpu) =0, Rl(fﬂ‘n) = 0.



§81]  APPLICATIONS. HILBERT-SCHMIDT THEORY 211

Then
b f)
)\Uf Q’-‘Puzdﬂ? = “"f ol (pylilx
ALE
- a 2|7
= Pl — qo0 }’Ex.
[ LN
Whence, ou secount of (57), A
g N\
A\
(%)~ got O
hy = > 0, (\:‘,

P : o\
f gqoazd-.'ﬂ m\

Hence, under the assumption (37) thc K}ldltl()n (FTs) is

always satisfied.
Applying this result to the 8D r:.lal\cas‘e (53) (54), wc

obtain the following lemma:
Lemma I —For the boundary. z?roblem 53) (54}, all of the

characteristic constants are p@sgme
Cireen’s function K(z, i}ig'the same as for the homogene-

ous string, since it cl{yp{( wnds only on L{uz} and not on g¢.
Therefore L z

\\‘ 1— x5t
'..;,‘IE(""“’ f = { El —a,x =t

Y, o
The bound\émy problem (53) (54} is equivalent to

J K 1) o
\ wfx) = )\[ Wu(t} it.

Kz, @) .

\h} thl‘: integral equation the kernel - 0 is not sym-

“Inetric. But, since C(z} 0, this integral equation is
reducible to one in which the kernel is symmetric by putting

(33) wu(z) = C(@)u(z) and Kz, ) = C@CEHE(, 1).

Then

a{z) = X f 1E(;a:, Dule)dt,
L]
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By the same transformation (58) the diffevent ol siquation
{53) is transformed into

(59) 2(e2) + cova 4 xa = o

with the boundary conditions A
(60) @(0) = 0, 4(1) = 0 AL
and it is casily shown that K(z, ) is Cirecn's Fu*{‘fzfon

belonging to the boundary problem (59) (607, A

We can now apply the Theorems 17 to ITRIN #ith the
following result: ) '\‘

The boundary problem (58) (60) has andaMinit:iie of real
characteristie constants all of index 1, f;ql\*u)‘ing an inereasing
sequenece L&

AR <A KAWL
with corresponding normaliz&gd@,fzmdu,montnl fanetions
$1(z), \&2(52?@3(37): .

But, if for a given A, “the boundary problen: (39) (60)
has a non-trivial soldtion, then for the same A, (33} (54)
has a non-trivial solution « = (. Thercfore we have the
following lemma.:

Lemma Il}w‘—The boundary problem (53) (34) has an
wnfinitude :Df “real pesitive characteristic constants, all of
index } “\fbvr:mmg an increasing sequence:

.o§w' 0<h1<)\2<’
ﬁfll‘h corresponding normalized fundamental Junettons
O Vi), Yala), .
where

¥ul2) = Cya(x).
¢) The Generalized Fourier Series.—We return now to (55}

2
(61 f“—‘f + Mg = 0.
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Hinee A, > 0, the general solution of {(61) is
¢ = A, cos VNt 4 B, sin /AL
‘i'erefore, presumably a solution of (50) which satisfies
(K1) is

(82} 7 = 2 (A, c08 VAt + Basin /N (). N\
n=1

Oy
1 order to be a solution, the condition (52) must be satisfitd .~
linnosing condition {52), we obtain G\
a0 = 3 Aale) = SO
A= W

Frn
Ly

2@, 0= 3, VAPl BT
et A
Pt f(z) and F(z) are given functiohs. Hence (63) can be
satisfied if A, and B, can be defétmined so that the series in
{63} represents f(z) and F@). Sinec f(0)=0, /1) = 0,
Fi0) = 0, F(1) = 0, it follows, from Theorem VI, that f(z)
and F(x) ean be sog@qresented if f and F are of class ¢,

and then e 2\J

A>\;'(fﬁbn): \/)\:Bﬂ = (F'pﬂ)

We can be sj’i}é"that (62) satisfies the differential equati‘on
it the sedie is twice differentiable, term by term, with

rt‘.spsﬁ\qt\xtb z and . Since
Nos hn
"{\ ’J’n” ('T") = - éé‘b" (x)

N,
N

S
N

Nthis means if

S ha(dn €08 V/At + B sin V()

is uniformly convergent in z and ¢ .
d) Special Case of Homogeneous String.
then

—If ¢ is constant,

A, = niwe

and $a(x) = +/2 sin 07,
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while
[
= 2 {A, cos nxct + B, sin nwet) sin nera
=1
o
e 31y
a=1 O\
For f{x) and F{z) we obtain: \:\
fz) = 2 V24, sin nrz N
'\'a.
Flz) = 2 v 2nxe B, sin nris Y
n=1 .,\\,,

These are sine series for f(z) and F(;c)\ For the : svelop-
ment of an arbitrary function in tr}gonmnntuc S6ries we
need know only that the functlo’n MS continuous and has a
finite number of maxima and"mlnlma These conditions
are not s0 strong as those th’alned by means of the theory
of integral equations whl\ were demanded for the develop-
ment in series of fundémental funvtmns

m s perlodm 1\} Wlth period T, = .- this heing the
period of the fundamental tone. gn,is pemodlc with period
T, = E\ _ﬁ’ and with intensity /4,7 4+ B,. Upon
the j{}&nslty of the different harmonics depends the quality
Of'\‘f'ﬁé tone. The tone of period ff is called the nth har-

fonie overtone, or simply the nth harmonlc
¥or the non-homogeneous string 7, is also periodie with

od 27
eriod ——-
beriod

T» decreases with n; the different periods are not fractions
of Ty, hence the total motion is not periodic.
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g2, vibrations of a Rope. e} Differential Eguation of
fhe P Lot n consider a heavy rope of length 1

AB =1
sy et et one e AL It is glvena small initial displace-
mien: 0o certien] plane through A Band then
paels ot bl i< given aninitial veloeity.  The A A
yope i+ < posed To vibrate inagiven vertical PR\
Pl ot e displiement 1s 50 gmall that “/
et noo el b slpposeill to move horizon- "\:\
fedlv s e eromsseetion 18 canstant; the cle'nﬁizM
sy eene s the eross-seetion inﬁnites@a
e o thee lenthe \}

Lot {0 S the pusition of the 1o 5211 time 8 8
fardd iy puint an L HB Dpa P hori- Fie. 21
L ?

zonzod el it vl

R
s’\,‘
MP&Y, B = .

" ts} . . Pl .
Pl 11 difterent inl euation! of the motion 19 given by

65 ¢ \,g\ @ ('2_5_(1~a_”)
N\ gt d\ar
whire *,\«(‘w’ ¢ = constant,
wilh xE‘Ei?_"’.l‘Ji}lHld:lI‘}' conditions
f\{> nil, £y =10, 0, 1) finite
vy a0y = fi2), e, 0) = Fle.

O .
<>~V We try for w solution of the form
7 = ?F(I)é(“

3 ) o) W in
Substitute this expression for z 10 (64), We obta

d duy,
pirig' (b = CrglE) Tz (T‘ ;;fr)

i dype Anwendung in
bee Rnese, o Die Infegralgleichungen und thre

der Mathematischen Physick,” 11
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Whence

d (y du)
&) - ff;‘: {f{“ O
ot ¢ W) T A3 constant,

d
That s e A =0,
and

§ \
X i dn N

(67) ‘h( Y+ =0 O
with the boundary eondition derived from u"ii'fj ,:} 3
(6R) {0} finite, #(1) = 0. \\ v
Equation (67} is of the form \

Liw) 4+ M = '\}\
with Y4 \

p=ux04 —i{)~

< N

In the general case p = 0 m ‘{m’: . This condition 15 nnd,

fulfilled in (67), for p(0), = *[) We have also the condition
(0} finite, which did. bt appear in the general ease. The
dll‘fmentla,l equa ?6:) has u singolar point for @ = 0.

b) Selution of\gz Boundary Problem —We solve the

boundary prgbiem (67), (68) direetly. Iut
‘\/
3‘3

N =,

..\{, 4
then ,.@)’ beecomes

d e du

R\Y
oy Pag T gt =0

@\
\>Vc try to find a solution of the form

o

w o= Z Cadn,

=)

If we substitute this scries for » in (69), we obtain

(Y1+2|: r11+(?1+l)2(7n_l_1‘| = 0.

n=1 :

N\



RL}.}\ from (70}
.\:; )
W u“(i)
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Therefore
(‘]‘ = 0’ C“_l -‘_ (n + 1)QCH+1 = {}p n = 1} 2} .
That 1s,
s Gt
(_;va,-l—l - (ﬂ. + 1)2
YWhenee

O =C=Cy= ... =0n=0. N
_— (*ﬂ . Cg v Cn B ,’\:\’
{ P '2-_!; ("4 = 25T2 ('5 - 22_42_62! - "[.\.\ o
S ! % \”,
Therefore PAY
ﬁ2 t,l fﬁ PN :I 3
w=~C|1 -2, 4+ .-t DN
“ “[ 2 g g T N\

By comparison with the series for e?, which iﬁ"permanently
couvergent, we show that this series for is permanently
convergent. This series also satisfied\(89). Put

, £ NF
T0) IO =1 gt g T Pares + .

J (1) is called Besscl's fungtion of order zero.

J(t) is then a solutiontef (69). Knowing a particular
solution, we can, by"{neahs of Green’s formula, find the
gencral solution: ¢\

i[J(QI{:\-\— VJ’(!)] = (', # 0(C, constant).

Divide bqt}:;}‘&embcrs by J¥(¢) and integrate. We find
» ¥ dt
Qv e = O f ey T O
O 40 p‘fw-(s) :
Lo~ 1yep@),

P{1?) being a powcr series in £, whence
dt .
L p 4 Pt
ftJ2(£) . log ()

and .
V = Co () + CJ @ {log I+ ()
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where IP,{#%) ig a power serics in £
This is the general solution of (600 The ol o 67
12 given by putting
= 2" 0
Whenee

= CoJ 2 Ne) + Ol ) t'} log 2w = £ 7 ,\

But, »() finite, is a mmhium upor the =alution u‘»:}lu« 5

N G
11111)0\%11)1(, unless 'y = 0. Therefor A \
(71) o= d 20 &v
is the most general =olution of (673, \\]n?\Q\{\ Dafies fhe st
initial condition.  We have the furtl 1{.\\\.;mr Hion « 1y — 0,
whoenee \"

NIVAVEY ;‘ (‘J}
The solution of this (qlthlfﬂ\vg_,l\f’\ = the elreteristie
constants, ~ ™
e} Consiruction of (rk(‘{’?{ s Funetion, —We construel Jor
the houndary pmh@m (67 (68) {he Groen'= frinetion
Kz, &) ‘-\R.fqujIIU{o\‘ti\‘ following conditions:

AV K C()n Buous on [Ol}

~\\\.I

N4 |
B Jof class 7 on [(MJ {{] } separatoly,

W

O ;
v 1
& E(z(j{;):() onl_!l [(l

Y0) R0, ) fuite, K(1) = 0.
Dy K'(0—0) — K'(t 4+ 0) =

prrately

Integrating the differential equation in 73, we abtain

aplog 2 + 3y, [U{'. ’
Kir,t) = -

la logt—]—d“{ J
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Bt KA{0, £) is finite, therefore ag = 0,
andd K{(1,t) =0, therefore = O
enee

Koo ) = f M

Kz, t} = i
'Al(a: t) = aylog z, [tl] O
.
irom condition A) ,'\’\"\
. '\ “
By = a1 log b O
From condition 1), sinee K'(t - 0) =0 and f}”(@ﬂ' 0) =
€ i e = — ] &\}
;0 we obtain e = = 1. 20
Therefore \\
ix\Jz [Ot]
1 6 -
. ) 3(115 )} = "_'}\ g i
T2y Kz, ) = ¢ o\

|K1(:r .t} =" — log %, [tl].

We ohserve that K (x, t),m nymmutnc The graphof K (x_, t)
for ¢ fixed is shown, bywt o full line in the accompanying
figure. Asa funot(bﬂ of the two variables 2 and t, K(z, ¢}

ig (,ontumous\\l [01] except ut x =1= 0. For in the

region m&risba J we havei > zand

\ 1
o Kz, 8 = log
i”\f’
«%“
o) Hl
NN \\
NN
a\4 \
) 4
|
|
4:\
!
4 # ! X
Fia. 22, Fra. 23

while in the region marked 7 we have { < z and

1
Kiz, t) = log =
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Forz =-0,4 > 0, we have K = — log {, finite.
Yoréi = 0,2 >0, we have K = — log r, finite,
d) Eguivalence with a Homogerneous Integral K (pritlicin., —
We have
Liu)y = — N\
LK) = 0.
P \
Multiply the first of these by — R and the secon u\w Fit
and add.  We obtain \"’

WL(K) = KL(1) = ek, V\ '

4

A\
Integrate both members of this expressiofnfedim O to f - 0
and from £ + 0 to | with re spect to ¢ an@a( do W alitain

u(x) = f Ku f)\g}df

The details of the 1nteg1at10n al(‘ tho same ax {hose given
several times prev mu‘-‘ly, wa‘llt for the term

Lu@& — Ku' J forz == 0,

But here and }i‘ are finite by hypothesis. From (71} we
see that if udsMinite so also is w’.  From the explicit expres-
sion (JZJ fOr K we find K0, ) = 0. Therefore
i"\‘
\\\~' x [uK’ — Ku} = 0forz = Q,
:fhe kernel

Q“ [ ~ log ¢, [08—4

Kz, ) = 4 -
] - log;r,[ﬂlJ
|

is gvmm(,tm,, but it is discontinuocus at one point, ¥z,
T = 0. Schmidt (page 21 of his dissertation) has
.shov\-n that the results of the Hilbert-Schmidt theory of
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conlinuons symmetric kerncls still hold for a discontinuous
wernel if

b
1 f K (xz, t)fit)dt for f eontinuous, is continuous in

T on [ab]_ ' A

91 The iterated kernel Kofz, ) is continuous and L‘lg)g.%\'

nui vanish identically. O

These conditions are satisfied in the present lnst,am:e “and
ihuz all of the Hilbert-Schmidt theory, as we]l as the
‘Theorems V to VIIL on boundary pmblemspl‘emam true.
Therefore: we know that there esists an iativite sequence
of positive characteristic constants x.\\;

0<)\;<?\2<)\3< \‘

with a corresponding completv ntu'ma lized orthugonal sy
tem of fundamental funvtmns [‘hvrefore

ngxfx
lixs an infinitude of 1‘)0‘\11,1\«'(‘ root% hae  Lut
~\ 29 =
Then Jk) = U\a}ld the roots are
S = 2/

"\
The ﬁrbt\fﬁ'ur valucs of &, are!
\h — 2405, ks = 5.520, ks = 8,654, ky = 11.792

?mh‘ generally (n — ogyw < ke < BT Therefore
~O o(z) = CoT /N = Col (/).

These fundamental functions on(x) wilt become orthogon-

alized if we choose
L

\f](:" '\/:c)cix

; Vorlesungen,”
I See I'RICKE, “Ana.l)-tm{.he—I‘unktlonentheorotischi’ SUNE

e T
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. .
But! f .V(A.\/.E)r!z, = —,1 T
()} EMOMIE

L \.‘“,.']
Therefore
Youlz) = LA’”\/E), and
J I_\J'r-..'-n'} N\
7= E Ay cos E{Ahffd + B sin (TL.”{- al OOW
2 2 )
=1 ‘"\.\ b

. . N P ,._x,\"' -
This expression for 7 osalsfies (643 and fix;j{.' We now

determine 4, B, if possible, in order 1}.3';&\ (6] mav he
satislied.  This gives ug the two r\quaki{;jzs\'
2Aale) = £y

5 ]f“g!/n’.\;r,';wﬁfwlj .
Since J0) s finjte £(1) = 0,

F(0) ig fimite, F{1) = o,

. N\ .. o .

Sy and Fir) can beﬁv_:gp“;.m(led as series i, e, provided
S and F are of clags ¢, and then

\ ' 1 S _,-"
A, =\§K}f[.r}~,b,.[.r)dx - [ iyl M
U

. Sk
8 !
while t\\? Céﬁ[}h — /‘F{J..)%“[_E, ip.
PN = o

8’,3‘?;‘1’18 Rotating Rope.-— (& Kxesmr, page 463
\‘E} @) TheProblem and I Diflerentinl
"g' i ; Equalion. —1et FG he an axig
,\’J:I’W P g around which a plane is rotating
’“\; ~ ' 7 with constant velocity; a rope A B
W ATy & Is attached at o peint A of the
‘ axis und constraived 1o remain in
G the rotating plane.  The velocliy
Fia. 24. of the rotution ix =o large that the

weight of the rope can be neg-
leeted. Then the straight Jine AB perpendicular to A6

PHEee Fricke. Lac, et p, 63,
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i« .. relitive position of equilibrium for the rope. Dis-
plie .Hm rope slightly from this position AB, then let it go
alter uparting to its partieles initial velocities perpendicu-

fur i AH. The rope will then describe small vibrations
arorind the position of equilibrium.

ot APB' be the position of the rope at the time §, I’ cne
of 1is points, PM L AB. Put AM =x, MP =mn, and sup-
nove AB = 1. Then the function x{z, ) must satisfy the(()

N\

pariinl differential equation O
ai'f.r 2 d o 371 ~ <\:‘
T e — i \JK 9N
e ¢ ax[(l T )63 , ¢ constainm,,\.\.
flus 1 dary conditi
i houndary conditions O

O
70, 1) = 0,2(1, ) = finitéy (),

and the jnitial conditions RO
o(z, 0) = 1@), 7 0) = F&), @
Putting n = ugx)f],;‘(g)
we obtain {\
: al du
. _ i -0
@) (NI ¢ x)dx]-i—)m

Y " u(0) = 0, u(t) = finite
i»\’:.\"' A’ | \Cm = 0.

AN\4 dt?
3b) Selution of the Boundary
~(point of (73). By Fuch’s theory! (73) has for eve _
./ and only one solution, which in the vicinity of ¢ = 18,

given by
=1+ e — 1)+ag(x-—1)2+ L.
s obtained from (ireen’s formula
) =1 # 0.
# gome 2, §412.

Problem.—2% = 1 is a singular
ry A one

Every other solution %s i

{1- 22 (urtis’
t See QlouRsar, ** Cours D’ Analyse,



224 LINEAR INTEGRAL EQUATIONK 1383

Therefore
d o Cl 1 o . .
— Tt = ——— = R Sile — 4y
dru, (2% — Duy? ' {I —1 T il c
Whenee
i i ‘"\
Uy = Cgu1 —+ Clul { ]Dg (.’I.' — 1) + LSL;E — ]) P
. , ¢ ‘\\.
Thercfore the condition, (1) finite, leads 1o (', =:1.§fo1-;1
hence A\ Dt
{(74) u = N 3

15 the most general solution of (73) which satdgfg}?ﬁlm secund
boundary condition, Put )

w\J

iy = [}T(.«":, R). ox:\

Then the first boundary conditiongiyes
T, )& 0
for the determination of tha\r;”!{a;acteristic constants. I'rom
(74) we see that each chardeteristic constant is of index 1.
Tet agbe a charactc{istic constant and go(x} = Lz, o)

a corresponding fugd}emental funetion, Then gyfa) is an
odd function: \\"'

O ey = — o).
For u; can,b&éxpanded according to powers of z, say
o .
\*:\, Uy = 2(_?,.&7’.
'{\ r=1

’];@e substitution of this series in the differential equation
W\:I(Sads to the following recurrent formula
g _ rlr 1) — x
IRCE VIT )
which shows that if ¢, = 0, then
Co=0,u=0,1,2 .

But from U{0, A} = 0, we obtain ¢,(0) = 0, hence (4 = 0,
and, thercfore, ¢o(2) is an odd funection.

s r42 C‘,—,T=O,],2, S ey
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We can at onee indicate some of the characteristic con-
stants and fundamental functions from the theory of
Legendre’s polynomials: ‘

1 d [,
Pu(®) = Gt e [(‘““ - ”“}

Polz) = 1,
P.(z) is & rational integral function of degree n, satisfy=)
ing the differential cquation NS

AT o @] it 1 = 0,
iz [(1 %) 31;] +n(n + Dy = 0-’.2.: :
Furthermore, Pz.(x) is an even function attd JP,,(0) #= 0,

Poai(z) is an odd function and Pgﬂ_l(%«r 0. Therefore
A = 2n(2n — 1), n =1, 2837 .

is & characteristic constant and D2 .(z) a corresponding
fundamental function. ~

%

The characteristic constant varc of index 1 sinee the condi-
tion u(1) = O determines3*up to a constant factor.
We will now show #hat there are no other characteristic

constants than _ ()

A =020 — 1), n=1,2,3, .
Supposé JXto be a eharacteristic constant and Xy # A
and go@oa corresponding normalized fundamental func-

tion;\tﬁeﬁ, according to the orthogonality theorem (§59}),
& 1
™ fm(x)l’zn_l(x)d:v = 0,
3]

Now oz} is continuous on the interval [—-1, +1} and,

therefore, by a theorem due to Weierstrass,! can be expanded
in an infinite series of polynomials uniformly convergent on

[—1,+1}

1 (JouneaT-Henrick, ' Maihematical Analysis,” vol, 1, §199.
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(75) Wolz) = 2, G,(x).
r=1
But, as shown under b),
Yol — &) = —alz).
Thercfore, from

e ) \
ol— ) = DG~ ) O

and (75) above, we obtain ”\Q

1&T.
bol@) = 23 [crr(:o — G~ S H ()
..“‘J
and EH,(;-:) is uniformly conveg;gent on [— 1, —I—I] From

the definition of H,{x) we tham

H.(~ a:‘) — H.(z),
] . \

that is, H.{x) is ag\odd function.

From the ufnform convergence of EH,(I) we have that

for cvery poswwe ¢ it is possible to find an m such that

x\'
<e,[—1,+1].
0 <e<

(76)\« Mx)— >, HoAx)
..,...,,—._1 -

(77) : |
/O‘i%(x)ldli

Since H, (x) is an odd function we have

<>{~bet us chooso

(78) ‘ z_:rf,(x) =2, Car .

r=0
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But Pa._i{x) are odd functions:

Pz} = aux
Py(z) = az07® + aaw

Po D) = @Gua®™ 14+ . . . T
N\
with a1y, Gsz, -+ o+ 1 @an # O

These equations can be solved sequentially for, x@\,za:s
..,z lin terms of Py, P3, . . ., Prec Pui these
values of £¥-1 in (78) above and we w1ll have '\ N

S Hx) = ZCPgr_l(x\’
ra=l r=al ,'\
This expression for ZH HEAN quhst}tutcd in (76}, gives

X

wolx) — ZﬁaPzr_l(x)

J«?O
Put ‘x:"
- @) = 3 0P i(z) + r(2),
(79) \{\(}) Zﬂ (x) + rlz)

p. N
whence A0

x?:;.\} |r(z) | < eon [ -1, +1].

ﬁtom (79) we obtain
\:3 f‘he(x)d:c = EC f Yolx)Par 1 (X)da -+ fr(x):,bg(x)dx
But l"&u(x)P%—l(z)dx =0

1
and l Yoi(zidr = 1,

1
Therefore 1= ‘[r(x)npg(x)dx.
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1 1
" Now fr(m):,{zg(x)da: < f r{z)(z)| da
0 0
1
< ef dolx) i dr.
1
l ]
Therefore 1< ef Yo(x)| dx, O
0 A o
. 2 AN
which, on aceount of our choiee (77) of €, plves AN
1 W
1< ef Yolz) | do < 1, N
L] »

- - . - "{."
which constitutes a contradiction, Them@c
Moo= 20 (2 - 1) N

are the only characteristic constants, 'ax,ik{ the only funda-

mental functions are AN
P Nz
¢ﬂ (x) = _-—__I.—’{:‘—--__—f ) =

3 -
N ;PZQ,‘_]_(:U)dx

~

ro Y 1
But = .
u _[’fim_l(x)dx B

as shown in the ﬂ\éﬁi‘y of Legendre’s polynomials. There-
fore O

A on(®) = v/dn =1 Pop_ ().
) .I;?g\i.{;"balence wath Integral Equation—We construct the
Grecz\{{yfunction as before and obtain
N

) [ sloe 1 T o0 ca g

3 2 - x

> K(x,:)=ll 14
gl el

K{z, t) is symmetric and has but one point of discontinuity
and that s forz = § = 1.

Schmidt’s conditions for a discontinuous kerne! hold,
however, and so the theorems of the Hilbert-8chmidt theory
apply. Procecding as in the previcus prehlems, we find
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that the boundary problem is equivalent to the following
integral equation:

u{x) = ljo-lK(x, Hult)di,

The Theorems V to IX hold for this boundary problem as ~
well as the orthogonality theorem, §39. Hence \
P \:\’

1
£ Poni(@)Popr{z)de = 0, m # n N\

N/

This last vesult agrees with a result of the'jihéfi‘ry of
Legendre polynomials.  Applying Theorem Vigwe see that
if f is of class ¢*' and f(0) = 0, then \/

. ® O
§@) = X CPaa@
=10 )
where C. = (ngg.ﬁl.)Eﬂ'lil-

o\

IV, ArpLICATIONS OF THi) HILBERT-SCHMIDT THEORY TO
run FLow OF HEAT IN A BAR

84. The Partial il}}ﬂerential Equations of the Problem.!
) Feneral Hypﬁ&l%ées.——The theory of the flow of heat in
a bar is baseduipon the following hypotheses:

A) Lefk d'?n"‘dcnote the mass of an element of a eonductor
of temperature 8, C its specific heat, then the amount of
he MQ necessary to increase the temperature of the element
frow' ¢ to ¢ + d# is given by the formula
oY dQ = Cdmdo.

\ )™ B) Let dw be the area of an clement of gurface through

an interior point P of a conductor, n one of th'e two normals

to the element, k the inner conductivity ab point then the

amount of heat which flows through the inner surface dew

in time dt is _

i = —kdud.
an

1 See Wener, “Partielle Differentialgleichungen,” §§32-34.
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() Let dw be an element of the outer surface of tic
conductor, & the outer conductivity at P, ¢ the temperatnre
of the conductor at P, 8 the temperaturc of the surrounding
medium at P, then the amount of heat which flows through
the outer surface diw In time df is

dQ = k(8 — ©)dwdt. \.
A

b) We now apply these principles to the detumia e
of the flow of heat in a straight bar placed along th( FIRPE
of a rectangular system of coordinates, with a, moss— section
a, infinitesimal compared ito the length, ;:q\th 1t the tem-
perature ¢ may be considercd as constaityaccordingly, ¢
will be a function of £ and ¢; 8(z, £). Thebar is imbedde «din
a medium of given temperature which s also supposed to be
a function of x and ¢: 6(x, ). ‘The bar has a given initial
temperature 8z, 0) = f(zx). Co‘hsuler an element of the
bar of length dr; we may r{)gard it as a cylinder.

N

&«

X

a Y X xedy é

A,
y X xyolx

N \ Fra. 25.
2,
]\By B} the quantity of heat which enters at the left-
~hand end is -—k-—aJdt

N 9z
- \Y

\ ) 2} Bimilarly, the quantity of heat which flows out through
the right-hand end is —ko a—e]dt,
L )xtfdz

or, if we expand according to powers of dz and neglect
higher powers of dx,

—ke &Y a8
4 ax] dt — ax(ka 6I>:|zdtd:c.
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3} The quantity of heat which flows out through the
cylindrieal surface is, by (7},

W9 — ©)ldxdt,

where ! is the periphery of the cross-section. The total
amount. of heat which enters the element of the bar in the. {\
time dt 15, therefore, A

{ o

3 (1e P _ heo — ot} O
[%(kcr 635) wo— o dadi. (\C

L 3

This amount of heat increases the temperatq;'{df the ele-

ment in the time df by g—?d.: and, thereforez b'y:A), is equal

W

a6 . . .
to Cpodi 3 dt, where p is the density ™ Hence we obtain

the partial differential equation, WV

(80) el =2 (fparfg-g) — (e - 6.

If, moreover, heat iw}oduced in the interior of the bar by
electric currents Q‘ﬁther sourees of cnergy, let

e Alx)dzdt

) S

he the fti;‘z\n’;;it-y of heat produced in the time di in the
interior 6f the element of the bar between the {:I"OSS-SBCT,ID_HS,
at a%zind z + dv. Then the partial differential equation
(80) becomes
N\

 uf 30 _ 3 (1,99 ~ o — O) + A@).

N c’ogﬁi_ax(ﬁgax) ( ) :
In addition, the temperature & has to satisfy certain bound-

ary conditions, which are obtalined as follc_)ws: .
The amount of heat which Jeaves at ¢ is, by C),

(81) hig — e)a]adt.
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On the other hand, the quantity of heat which flows throngh
the cross-section a -+ & in the direction of the negative -
axis in the time df is, by B},

ko 36] dt.
g atk

The Hmit of this cxpression as h approaches zero must {h{ )
cqual te the quantity (81).  IIence weobtain the first lmu\?‘
ary condition . QO

ho — 0) — k 69] =0 o

‘ p \:..,s\"
The same reasoning applied to the eross-sgéiion & gives us
the second boundary condition \J

x'\
ho — 0) + & a?l

g},
b‘

¢} The Special Case 6 = ) A“— 0.—We now consider
the differential cquation undm' the assumption that
O U A =0,
. . N
The differential equation is, then,

r\\‘”— ke 50) — Mo

¢/
Put oy = ga), ko = p(:c), M= —q(@),
then i"\,.:' g{z) > 0, p{z) > 0, ¢(x) < 0,

N

md 3 g(x) = 0 only when B = 0,
"\Th(, differential equation of the problem new becomes
\' o8 @ 69
82) Y9 = ox T b
hia) h(b)
Put o= Jfg 2 0, =H, =0,
k{a) R 10 tE

then the boundary conditions become

0:{a, 1) — Hebla, t) = 0
(83) [ 6.0, 1) + Hao(h, 1) = 0
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“he Dntial conditlon s

ey o(x, 0) = f(x).
¢ 1 is not entirely arbitrary, for from {83) we obtain for
-
8.(a, 0) — Hofle, 0) =0
6.6, 0)+ H.@h,0) =0 N\
whoenee :’CX
=30 Sy — Iyfla) =0 \t\ .
716 + Hifb) = . A
Ui zolve (82}, put (V" -
NN
g = ulz)elf). \V

b . )
‘Uhen, in the usual manner, (82) lll‘i‘é}l{Q‘m info the two
ordinary differential equations: o\

o du :“:“
L U-%an =10
R A (P ffI) + ?,uﬁ— g _
s

¢ N = 0
E‘Ft"':b Re '

(37

while from (83) we g’b"t\

(88) \\u’(a-) — Houla) =0
O W)+ Huld) = 0
\¢ _

a5 boungdey conditions on (8())_. _ -
Wedndve, as in our hypothesis (7, §72., that 215 of class

C ‘p\ﬁ' 0. Tn addition, we have g > U_ant_l‘q = 0. .
_We shall now show that all of the characteristic 001‘1st-an‘ts
'\”br (86) are = 0. This proof is apalagous to that given in

J the proof of Theorem VIIL T d
We suppose that Ao is a characteristic constant and ¢

a corresponding fundamental funetion. Therefore

(59) Ligo) + Mgog =0
©0)  pyla) - Hopola) = 0 oo'(®) + L) =0

and ¢, 7 0 is of class C”: -
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From (89) we obtain

b 6
Mf geotdz = ‘—f eol.(pg)dx.

Integration by parts gives

Ao f gectds = — pBles(bled’(b) -+ pla)eo(a)ed (@) \

b ,\:\'
+ f (pee™ — g r,
] . W

which, by (90}, reduces to '(..,‘

o Re4
(1) o f godtds = pBYeE®)H: 4+ pa)edt@is
5%
P (ped® — godia.

Now p(b), (D), pla), en(a), aaid’i) are positive and not
zero, and Iy, Hy, 002 e, 7’&23]‘& 2 0. Whence, from
(91}, we conclude AN\

2 2 0.
The equality will hg@ only when Hy =0, Hy =0, g = 0
simultaneously. , Bub —~ ¢ = kI and ! > 0. Therefore &
= 0, which mez}IB\ﬁhat no heat escapes through the eylindri-
cal surface. . ItPalso follows that no heat escapes through
the onds fu} h(a) = 0, h(b} = 0, and hence the equality
holds qg[}ﬁ'hen no heat escapes to the surrounding medium.

W\‘\:can now construct the Green’s function Kz, ¢) and

eghgm'k\)}ish the equivalence of the boundary problem with
the integral equation

o\ &
\/ u{z) = A f Kz, Hg(hu@®)dt.
The kernel is not symmetrie but the substitution

wW@HVg@) = a@), Kz, )V glz)g@) = Kz, t)

transforms the problem into one with a symmetrie kernél.
This transformation leads the given differential equation
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wilo one in which ¢ = 1. We can then apply the results
of the general Hilbert-Schmidt theory. Further, we can
wpply the Theorems V to VIII. We know then the exist-
cove of an infinitude of real characteristic constants each
U dex 1

O < << . .

with corresponding normalized fundamental functions /A
£

i), ol dalz) o - ' O
We now turn to the solution of (87) for 7\'7—}7(;‘{‘, The
solution is '\\
(1) = Coe ™™ ’
whenee PN

g = Cne-h.‘!‘h‘(@ &

fu;si the boundary conditions

is u solution of (82) which sa"big :
the initial eonditions (84}

but in general will not s%t,jsfy
Construct o8

Ny
(92) o Y, Ce ™™ a(®).
s {:"} n=1
If we assurp&hat (02) is convergent and admits one term-
hyv-term paﬁr.tial differentiation with rf:spect to ¢ and two
term-hy*térm partial differentiations with respect £0 2 ftheﬂ
(92), {disfies (82) and (83), and (84) will be satisfied 1

o\” @
\ 3! Cognls) = 1@),
n=1

d into a series of fundamental
ble follows from Theorem }LI
provided f is of elass c”,

2 &

ad
N

that is, if f(z) can be expande
functions. That this is posst
when we take account of (85},
and €, will be given by
Cﬂ = U‘l)b“)'
86. Application to an Example.—We consxd;;d 1;0: Oﬂ
special case where C,a, & k, h, 1 are constants ’
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b=1. Hence, p, g, g in (86} wre constant,  Put h_
Fi
Ag : _
— 1? and » = gonslant, wlich we use as a new pars-
meter and again designate by A, Then (86) becomes

o2

dx?

Sy

N\
If we now assume that no heat cscapes through lefi Wi
end surfaces, then Hy = I, = 0 and the boumh(n} SEIHTHE
tions become O
wW(0) =0, 1(1) = 0. &)
For this boundary problem the Lhar&cke}}ﬁ'tu, constanis are
easily found to be

) ¢ X
N Y

Moo= BN, = nir 2+b2,,- =2 3,

and the normalized fundamental functions arc J,(z) =
Yal) = /2 cog nrz., SN

For the further d\w%wn we have to distinguish two
cases:

Case I.——b = f}\\ Then all of the characteristic constants
are positive. .’T‘heufore A = 0 is not a characteristic con-
stant  and Bo'hdltlon (H:} is satisfied. Hence for this
boundary\problem we can construet a Green’s funetion
satlsf\ung the following eonditions:

J

~\”3 A} K is continuous on [UIJ.

B) Kis of class ¢ on [Ot:’ [31 separately.

d*K

pr VK =0on [OtJ [61] separately.
€)Y K'(0) =0, K'(1) = 0

DyK'(t—~0) - K@+ 0) =




NS

3
3
\’
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The (3reen’s function satisfying these conditions is casily
found to be
cosh bz cosh b(1 — 1)

K(z,8) = B Sty Lz<t
: cosh bLeosh b(L—2) , o o |
bsimhd Es s L

4

it {# symmetric and the boundary problem is equivalent to

tk2 integral equation &Y
1 ;,o\\ o
w(z) = A f Kz, tHult)dt. AN
1] <N

Thenrem VI of this chapter assures us thg,‘tf\v‘efy funda-
wental function of class C” of this boundary-problem, for
which 1/(0) = 0, #'(1) = 0 can be exga@@ed into a cosine
series \\ :

o PN
ulz) = 2 (’3',, 008 ATy
B=ALY
convergent on the interw}l‘@”é z <1
Case IT~b = 0. Lhe’ boundary problem now becomes

N\
l()g} g:-; {.\ﬁ;{;: 0, u-’(O) = 0, ’u."(l) = (,

for which the Sharacteristic constants are
\Y;

A1 0, A = #5100 =1, 2,3 .. -

. N - ; iorn
Wlt}\*tlze corresponding normalized jundamental funetions

N vola) = 1, ¥ala} = 4/2 cos nr.

™
AN

Let us consider
) : 1
Kz, ) = Kz, £y — Bt
From the conditions on K we find that K satisfies thesame
conditions. Now let
ljm Kz, § = HE U

-0
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We find
x2+.t2+1_t_ﬁojoﬁx<£
2 3
Hz, t) = w4 g2 1
_2 _i_g—a:EHl,téxgl.

We sce that H(x, £) is symmetrie and satisfies the follow- O\
ing conditions: A o

(\)

AY H is continuous on [01]. \5’\ )

' 4 ’s‘

B} H is of class C on [Ot] [ ] separatf‘]\\,

d:q
i 1 on [Ot] [ﬂl:l separa:&g}

¢y H(0) = 0, H'(1) = o \‘
D) H'(t—0) — "G + ‘LJ
B) f M, Hdt = 0, (;)»

wk
We will now show tha,t the boundary problem (93} is
equivalent to \

&%}) = )\f Hx, Hult)dt.

A) Mul\l.[ﬂy both members of g s = — Au by —H,
arid \lioi:}f members of da':? = 1 by « and add, We obtain
AN d
'*\)3 &i;u(uH’ — ') = zuH + u,

whenece
: =10 1 1
(ufl’ — Hu’)] + (uH' — Hu’)] = f w(x)da +
[{] 40 ¥}
1
)\f Hiz, Hulznlz,
i}
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« hich, on account of (93) and condition €) on H, reduces to

t—0 1
i - Hu,’)] = }\f u(zidr + ?Lf Hiz, Hulz)dz,

L0 0
which, by conditions 4} and D) on H, reduces to

1 1
u(f) = ?\f wlzydz + )\f H{z, Hufx)dz.
1] 4]

o {rom o = —aulz) O

we obtain, by integration,

1 1 1 X

d?u i P
B £ ueds = £ P dm]{,?g\-v
Therefore

'\/
(94) u(z) = Rf Hz, 3)UQ(R

Thus we bave shown that cvery G@otution of .the boundary
problem (93) with N # 0 is axsnlutmn of the integral equa-

tion (94).
B) Conversely, suppose. ’that u is continuous and

95y - ulz) axf H(x, Hu(H)di, and } # 0.
? \\o/
Then N .
u(xgmf .Gz, ulbdt + f Halz, Dult)dl
AN 0 JE
wheneet

\ z : 1 ,
@ W@ = f 11, Dl + f B! (@, Du(Odt

~\ ,aud .
Wy = H”(m, Du(t)dt + X f 1" (=, Huldds

4+ ANHL (s pufr) — \H (x, zyulx)
But 1 = 1and HE -0 — HET +0) =L

Therefore .
'z + Az} = ?\[ w(f)dt.
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But from (95)

t 1o
f w(z)dz = }\f f Hz, Hultydtdz
3 [1] 0
1 1
= kf u(t)dtf Hx, idx = 0§
0 )

N\
on account of B). Therefore .
X OV
w{z) + Au(z) = 0, ~ N
Further, from {96) we obtain \,n}" i

1 ,\
w'(0) = )\f I (0, Du()dt = 0 ,’\
0 v
1 »
Wity =x | HYQ, Hu(t)ds, &,
\

on account of €). Therefore we hme proved the equivi-
lence of the boundary problem and 1nteg1 al cquation.

86. General Theory of the~ ‘Exceptional Case.——71he
method just applied to the *?pm cial boundary problem {437
is a speeial case of the general method which Iilbert uses
in the execptional casé\ where A = 0 is a characteristic
constant of the boquafy problem:

(97) O LW =
(98) '\:‘\' Ro{u) = 0, Bi(u) = 0.
Let %(:@/ e a normalized fundamental function be slonging
to A 7\%’@0 that ¥ is of class (77,
AV LG =0, Rolyu) = 0, Rig) = 0,

NW b
N/ f Yola)de = 1,

Then, according to Hilbert,! the equivalence of (97) (98)
with an Infegral equation ean be established as follows.
a} The Modified Green's Function.—

' Gétt. Nach., 2, p. 219, 1994,
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Theorem I.—Under the above assumptions there exists
ore wndd only one function H(z, t) satisfying as @ funetion of
> e following condibions:

.ty I is continuous on [ab]-

iy I is of class €7 on [at] [sb] separately. 2\
L) = go{@)alt) on M M eparately. LD
C) R(H) = 0, Ry(H) = 0. Ry

. ; ) . _1 . 'T\.
D) I -0 = B+ 0 =25 a0

b
) f H(z, Ogo(z)de = 0, (&) 'x:’\\"

iy, {) is called the modified\Green’s function.
~utline of the proof of this thgqurﬁ'is as follows:
Let uplw) be a pa,rt-ic.ular'gdi,l’l‘ﬁiﬂn of

Link® dol@¥old,

then the general soldtion is

ﬁ‘\ié}uo(x) + apslz) + BV (@)
y =0, independent of

An

where V is gg,pa)tl enlar solution of L{u

Vo). N
Nozg By Green’s theorem,
. '%M; p(,’bovr _ 'PI]IV) =

\dsl'd we can select V in such a way that ¢ =1

.\) “ We now put .r .
™ [ wal2) + o) + BV RES

Hz, 0 = | ) + aola) + V@S

Then 0

(99 RolD) = Rolus) + BaBolV) =
) o = Raluo) & BB = 0
RA(V) # 0.

determine Bq, By, since Ro(V) # 0
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The conditions A) to D} determine og — a; and 8y — §.-
&y — ¥ = — VU); ﬁn - .81 = ‘;’0(3)-

Since By, 8; have already been determined, this furnishes sn
apparent contradiction, but it will be found that the
determination of 8y — 8 5 & eonsequence of the determina-
tion of By and B, separately. Thus the conditions 4) 5p{ >
D) determine 8y, £, an, @1, except for an additive 0011<tm\
which is determined by E). o\
Theorem II. The function H{z, ) is symmetmc**—

For let aStZssh ‘
Multiply each member of ' \\
; "
L:H(z 0 1 abu('r)abc@f
L J

by — H{z, s) and cach member of \ }\\

H(z, s) } \Pe()ols)

by H{r, t). Add and 1nt~égzate from a to ¢, { to s, 5 tod
and add the results.  Welobtain
Qm s} = His, £).

by Hilhert's ﬂ@f}émgntal Theorem III now takes the
form

Theore}l}\I,II .——If I 18 continuous, then the slotements F
is of clqsé..(‘-‘”, LFY4+ =0, R(F) =0, B,(F) =0 imply
and _arevmplied by

, b
»Lz\\ Fx) = f Hz, Df()d.
\»/ Hence the expansion Theorem VI has to he modified as
follows:
If Fis of class 7, Ry(F) = 0, R\(F) = 0,
then

F(z) = Z04.()

where

o = FY,).



gt AVPPLICATIONS. HILBERT-SCHMIDT THEORY 243

A pplying this theorem when F = u, f =M, A% 0 we
ohieme if 1 is continuous, then the statements, u is of class
0 Lluy b = 0, Ro(u) =G, Riu) =0, A # 0, imnply
21! wre implied by

ulx) = ?\fbH(a:, Du (i,

"'1.is establishes the equivalence of the boundary problem O
..+t the integral equation. O\

37, Flow of Heat in a Ring.—The deductions whigh\we="
nawte in the previous problem for a straight bar ]}glﬂ"for
auw linear conductor if we take for the inde- ':.‘ }
pendent variable 2 the length of are from N, /
£ued point 0. The results also hold if thie
ving it closed and the two end points Apnd’B
csincide. When A and B coincide: tihe?bbund- Fra 26.
aoy conditions are modified as shown later. .

.ot us suppose 8 =0, A ié"[lj‘total length of rng = 1.
“I'hen the boundary prol;lepi’;b’ccomes
. aglha ¢ a6
Lo g~ oz Pe) T

0 U’\ﬁ’\= 01, 1); 8.0, ) = 0:(1 D

d of the flow of

from the cofitinuity of the ternperature an
heat at 450 Also
27 60 = f(z), initial terperature.

P&\ 6 = u(z)¢() in (100).
" :"\'.'”'“'0 obtain )
U fh“ L a-tu=0
{102) w(®) = ull); w0} = ' (1)-

Case IT.—x — pz > 0, say - b= .
The general solution of (101) is

3 = a COB ,u:E’i’BSinlux'
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The boundary eoriditions {102} give the following two caua-~
tions for the determination of «, 8.
(103} afcos u — 1) 4+ Bsinpu =0
—asinp+ Bleos u — 1) = 0. -
These two equations are compatible for values of «, @
not both zero, i and only if

cos ux — 1 gin g| 0 A
—sing cosp— 1 ' A\
That is, if’ 2(L — cos u) = 0, >
. N
whence e\
= 2nz. . m:\"

For these values of y, cquations {103) aresitisfied by all
values of @ and 8. For other values of i Q‘he only solution
is the trivial one ¥ = 0. The chalagt{\rlstlc consfants are
then N\Y

=B+ 40 =N2, . . .,
each of index 2. "’4 N
The mrref:pondmg fund,amental functions are

= aFQ&er;U o ;8 sin 2nrr.

Case FI—\ — 2'\5'0 Then » = ¥ is the only charac-
teristic constanty, = constant is the only solution.

Case ITT ——7& 2 bt < 0. Then the only solution ig the
trivial one\u. = 0. The characteristic constants of the
problemw{irg then X = 8%, A, = b + 402, 0 = 1, 2,
with n@nﬂah?ed fundamental funections

R\

\ D 1, v/2 cos 2nmz, A/2 sin 2nwz
\ &nd, gsince f cos 2nry sin 2nre dr = 0, the complete nor-
malized orthogonal system of fundamental functions is
1, /2 eos 2nmz, \/2 sin 2nwx

with the charaeteristic constants

: 52’ b+ 4?327[‘2, B - dnlxt,
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Thi: s to contradiet Theorem VII of §75, which stated
thot be index s always 1. The assumptions of this
theors s were, however, that the boundary conditions were
of e Do

Aufla) +Bv (@) = 0
Culb) + Du'(b) = .

Tl enindary conditions of the above problem are ofa N
pee - weneral type: OV
Aula) + Bow'(a) + Cou(d) + Do’ (b} = 0 <\

~

Ala) 4 Bo'(a) + Cou(b) + D' (B) = 0}\'}“"
whis iy explains the apparent contradiction. £ ’
Vb s 0, (I ») is satisfied and we can procee’(};}o construch

Croen's funetion: \
oosh b6 =2 28 ¢ ¢
E 2b si;:ahzé.*

}\'_(r, ﬂ) = ?9511.'_{%'_(?:?—{'—_—-—}—6—; " 2 i
L Q*::"éb Si.l'lh 2‘ .
andd the boundarydproblem is equivalent t0 the integral
equation ™

O ul@) =2 f bK (x, ud)dt.

PN\ : .
The ofpmsion theorem ¢4k now be statgc}f as fﬁuows.l if
F il lass €7, F(0) = F(1) and F'O) = F'(1) thent
O B, sin 20s2):
SN Fix) = Ae E(A,. cos 2nax 1 Pa

ny *

o) : ; pansion of
~LJ  This is an ordinary TFourler series for the exp

¥y for the interval [ OL |

Ti b = 0, then (I2) 18 not satisfie
construct! a modified kernel:

<t
140 — 2 — 1/6)2 + ;éé; =
iz, &) = i‘i%x -t 144, b £ .

1Ree [XESER, "In‘rcgrulglcichlmgmr" 7.

4. Then, 85 in §86? we
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88, Stationary Flow of Heat Produced by an Inizrior
Source.—We have so far been considering the prohiem of
the flow of heat under the assumption that no host was
produced in the interior of the conductor: 4 = 0.

a) Solution of the Problem of Stationary Flow of {feai.—
Let us now consider the case A # 0. The cquations of the g

problem now are A\ ¢

ag _ af ob in R\
97 = a_x(pél_x) + ¢f + Adix) X O
a8 < O3

Ho# — =0forz=a,/To 20 ¢
ax (¥

Hle+g—i =0forz =5 H 2 (i-‘}

w\J/

Instead of the initial condition 8{z, (}x)\sr Fiz), we recnirve
that the flow of heat shall be statignary, that is, independ-

ent of the time, that is, 8 = y,:’(:i) ;Lnd, therefore, 3;’ SIS

Then the equations of the’pi"é’l"}icm are

(104) dﬁx (pi%) + q*tiq,‘{"A @ =0 [L(w) + 4= 01

Rolol= Hapela) — w'(a) = 0
Rifw) = Huw(b) + w'(b) = 0.

This is a :f{ar{-homogeneous boundary problem. From
Hilbert-fs\‘ﬁhii;d fundamental theorem we can write down st
once thedollowing:

I8N is continuous, then the statcments, w is of class
CSLw) + A =0, Ry(w) = 0, Ri(w) = 0, imply and are

o~

{ \ifiplied hy
(108) wir) = fK(x, £ A (8)dt,

(105)

That is, the boundary problem (104) (105) has one and
only one solution given by (108). Thus we have the
theorem: Every continuous source of heat A(z) produces one
and only one stationary flow of heat expressed by (106).
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b Physical “Interpretation of Green's Function—From
:106) Kneser obtains a physical interpretation for Green's

Tuttetion.
' i

a bkt Fyth
v

16, 27,

2\,

"Take f; between a and b and let us suppose that .y .
_ *"E(}foraéxétu—h,to—%héxgb'
,"1($)< > ¥
[_Ufortg—-hgxétu—-}-h.
Tlien, from the first mean value theotem for definite
integrals, there cxists a 4, ty — héﬂ@’é\tu 4- & such that

taLh P\ o’ to+h
wiz, k) = f Kz, A Bt <Kz b) [ AW,
ta—k R =

Now A (x)de is the quant-it}'ftjf heat produced In an element
al b

dz in unit of time, and hence | A(f)diis the total amount

of beat produced ift }:}e par in unit time.  This is called the

strenglh of sougce heat. .
Let us suppose that the strength of the source of heat is 1:
N/

y. i+ h
(107) 70 Adt = 1.

'S M to—h
Le‘f\\ﬁ“’ 7, — 0 and let at the sam
.'~\'ﬁlf’0n h, so vary that (107) remal
™ Kz, to) = LIm wiz, k)
h—0

e time A {(z), which depends
s gatisfied. Then

i \

\‘;
n the general case Green’s

Thus we have the theorem: [
duced

function K(x, £) represents the stationary femperaiure pro

by a point source of strength unily placed 6t T = b
89. Direct Computation of the Characteristic Constants

and Fundamental Functions.——ln all of th'e examples in
which we have been able actually to determine the charac-
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by

‘teristic constants and the fundamental functions, we haw
determined the latter by means of a boundary prohics,

The question arises: How could we directly detenimne the
characteristic constants, and the fundamental fonctions
for an integral equation which does not correspond o a
boundary preblem? We might obfain the eharacicvisiie
constants by the solution of the equation D(A) = [, and
determine the index and the fundamental functirms ¥y,
means of the Fredholm minors. I'or some simple ky el
this i easily done, but in the general casc this uuc‘*}m\?. 18
hardly practicable.

Another direct method has been developed\b\ Sehmids
(“Diss.,” pages 18 to 21) and Kneser Jwitegralpicich-
ungen,’”’ pages 190 to 197), at leust for RS vammetrie keroel

For simplicity, let us suppose that wetknew a prios £ihat
all of the characteristic constants ape'positive and of indes 1.

a} Delermination of h.—It was dstablished in the general
theory that if 0 < &y < A LU, . wore Lhe chareleris
tic constants for K(z, £) aud ¢1(z), ¥a(x), . . . the cor-
responding complete normighzed orthogonal system of find-
amental functions, then the kernel Kz, #) had the
fundamental fu (\i‘ons and they belong o the charncte
istie constants O A2 < A2 < . . ., for which we write
< pe < N . Now we hav'e the lollowing cxpazision
for the ]an‘rithmic derivative of Fredholm's determinnnt
D()) detived from the kernel K(z, £):

& Dy _ 2 R
N DOy bZOUw?\” (143, $34]

.\' 3 1=

\ ) “where U, = fK {x, z)dz, convergeni for sufficicntly
small values of A,

Hence if we Cfﬂl Do) the Fredholm determinunt for
Ks(x, &), we obtain the corresponding expression

D) -
(108) LDg(_J = —'?z‘]bzﬁ‘jpn'

TS

tpe
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- o) . . . . .

Now ,-')-“{\u“')) is a meromorphic function with simple
poivs, the poles being the roots of Ds(u) = 0. Arrange the
gt (< g < g <o <. - in order of magnitude.
Foneo the cirele of eonvergence of the expression (106) for
2

T

passes through and hence the radius of con-
. N\
virgence s egual to pi. .
“aw there is a theorem! on power serics to the effect thatiy
e raclius of convergenee B for the series ZA,@" is givgilfsbir
A, 3

lim —— = E )
ﬂ-—»mAn+1 ’ " W

b 3
0/\

niavided this ratio has & determinate limit @ -—» w.
‘P'his theorem applied to the present, prﬁi‘flem gives
. A\
lim ——% =7y
ul-];nm U?n+2’ 1 ) E},
nrovided the limit exists. 1‘h‘éﬁ:this ratio has & de:termmate
limit follows from the mgRotony principle applied to the
inequality “~ "
q ¥ ?2\ . s
o{m‘ﬁ—l_—‘ = 'U_—— > 0
’\\"' Fow = Uasz
which we prQifed in §58. _
b) Computaiion of the Fundamental Function (). —From

D b Konll )
.x,.\/' Ksnpala, y)":./a-K?(x" HEult ¥

Jeé obtain
o~

L) &
) 7109) Kol ) = m[ Koo t)(‘“‘“K“(t’ y))dt'

Now Schmidt proves in his existence proof for the eharac-

teristic constants that
lim g Keal® §) = @, v

R—re

- ”
t HargnEss and MORLEY, «Theory of Funchons, y76.
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a definite limit funetion which is approsched u=ilcrmuty
with respeet to z and g in the region R. Therdicr, by
passing to the limit in (109), we find

h
f(x} ?}) = P‘lf Kﬁ(-r; l'::)f(f, y)f”

Further Sehmidt proves that f(z, ) #£ 0. Ilenec o for
some quantity ¢ we have f{c¢, ¢) £ 0, then the foietion

flz, ¢} = ¢(z) #£ 0 and, therefore, ofz) is o fundaciental

function belonging to u; since it satisfics the equatio. O
This funetion ¢(x), normalized in the usual way, giye “\ll'\
the fundamental funection ¢ (z) belonging to A, s
¢) Compuiation of the Other Characteristic (’mi?}:m weriel
Fundamental Funclions—The other characterighie con=t:-nts

and funclamenta] funetions can be obtamed‘f}t:r{(csm dy as
follows. Let \\
(110) K(z, 1) = Kalz, ) — rm‘”}

be a new kernel, then we can .;sfl,mw that its characiviistic
constants and fundamental functions are

MM <N (), 9ala),
For from (110} we el\)t@m

(11%) fKa’(a: ﬁ)sif {Hdt = fK (z, O, ()dt +"’1 z) 61,

v.there ﬁxv..léz\.bhﬂ Kronecker symbol. When » = 1, u‘ll)
ves
gl A

2 S

b
RN f K¢ (x, o (0t = 0.
\W}lgn v = 1, (111) gives

b
V(@) = f K2 (x, 04, (0,

which proves the above statement.

Applying now to the kernel K, (z, {) the method deseribed
under @) and b), we obtain X\,? and ¥1(z), and so on.

\.
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